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Abstract—In this paper, we explore a cooperative integrated
sensing and communication (ISAC) framework that utilizes
orthogonal frequency division multiplexing (OFDM) waveforms.
Under the control of a central processing unit (CPU), multiple
access points (APs) collaboratively perform multistatic sensing
while providing communication service in a cell-free multiple-
input multiple-output (MIMO) system. Achieving high sensing
accuracy requires the collection of global sensing information
at the CPU, which can lead to significant fronthaul signaling
overhead due to the feedback of the sensing signals from each AP.
To tackle this issue, we propose a collaborative processing scheme
in which the APs locally compress and quantize the received
sensing signals before forwarding them to the CPU. The CPU
then aggregates the information from all APs to estimate the
location and velocity of the targets. We develop a distributed
vector-quantized variational autoencoder (D-VQVAE) to enable
an end-to-end implementation of this scheme. D-VQVAE consists
of distributed encoders at the APs to locally encode the received
sensing signals, codebooks for quantizing the encoded results,
and a decoder at the CPU for location and velocity estimation. It
effectively reduces the amount of data transmitted from each AP
to the CPU while maintaining a high sensing accuracy. We employ
a collaborative learning-assisted scheme to train D-VQVAE in an
end-to-end manner. Simulation results show that the proposed
D-VQVAE network outperforms the baseline schemes in sensing
accuracy and reduces fronthaul signaling overhead by 99% when
compared with the centralized sensing approach.

Index Terms—Cell-free MIMO, cooperative ISAC, localization
and velocity estimation.

I. INTRODUCTION

The sixth generation (6G) wireless networks aim to sup-
port emerging services such as immersive extended reality,
intelligent transportation systems, and smart manufacturing, all
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of which demand increased spectrum usage for both sensing
and communication. As communication systems transition to
higher frequency bands, which are conventionally used in
radar systems, researchers have been developing algorithms
that enable spectrum sharing between sensing and commu-
nication systems. Increasing attention is also being given to
hardware sharing between both systems in order to reduce the
device size, weight, power consumption, and cost. Since the
radio frequency (RF) frontend architectures employed by radar
sensing and wireless communication systems are similar, the
integration of these two functionalities is feasible. This overlap
in frequency usage and hardware design between radar and
communication systems has driven the emergence of integrated
sensing and communication (ISAC).

ISAC has been identified as a key use case for 6G and can
benefit various applications, such as the Internet of Things
(IoT) [2] and vehicular networks [3]. It enables wireless
networks to simultaneously transmit information and receive
sensing echoes through a unified infrastructure and shared
resources, thus improving both spectrum and energy effi-
ciencies [4], [5]. Orthogonal frequency division multiplex-
ing (OFDM) is a widely used waveform in ISAC systems.
OFDM waveforms can effectively combat frequency-selective
fading and provide high data rates [6]. Moreover, OFDM
waveforms exhibit Doppler tolerance and do not suffer from
range-Doppler coupling, which makes them suitable for radar
sensing [7], [8]. Unlike the conventional OFDM radar systems,
where the transmit signals do not carry useful information, the
OFDM signals used in ISAC systems contain modulated data
for communication, which introduces different phase shifts in
the transmit signals. These phase shifts must be considered for
sensing [9], [10]. By analyzing the reflected sensing signals,
the range and velocity of the targets can be estimated. The
use of multiple-input multiple-output (MIMO) architectures
further provides additional degrees of freedom (DoFs) in the
spatial domain, enabling the extraction of angle, range, and
velocity information of targets from the reflected sensing
signals [11]–[13].

However, the conventional monostatic ISAC configuration
with a single MIMO base station (BS) faces several limita-
tions. On one hand, the communication performance may be
degraded due to inter-cell interference, and users at the cell
edge may experience poor service. On the other hand, relying
on a single BS limits spatial diversity, which makes accurate
sensing in complex environments with multiple targets more
challenging. To address these issues, cooperative ISAC ex-
ploiting cell-free MIMO architectures has been proposed [14]–
[17], where multiple access points (APs) are distributed across



the coverage area to jointly provide seamless communication
service and gather multiview sensing observations. These APs
are connected to a central processing unit (CPU), enabling
effective collaboration among the APs. Cooperative ISAC
can enhance communication through coordinated multipoint
transmission, providing more reliable connections and higher
throughput. The multistatic sensing enabled by cooperative
ISAC offers wider sensing ranges and captures multiview
sensing information, leading to increased sensing accuracy.

A. Related Work on ISAC

Researchers have explored the use of OFDM waveforms
in ISAC systems. In [9], the OFDM waveform is applied
for range and velocity estimation without compromising the
communication performance. The sensing channel frequency
response is first estimated, where the communication infor-
mation is removed. A deep learning-based algorithm is then
applied to extract the range and velocity information from
the estimated frequency response. In [10], a super-resolution
method is proposed for range and velocity estimation by
exploiting the translational invariance of the received sensing
signals in frequency and time domain. These studies focus
on single-input single-output (SISO) scenarios, whereas in
practice MIMO architectures are widely employed at BSs to
enhance the spectral efficiency through beamforming, enabling
the extraction of angle, range, and velocity information from
the reflected sensing signals [11]–[13]. In [11], sensing pa-
rameter estimation using ISAC is studied. The multiple signal
classification (MUSIC) algorithm is used for angle estimation
based on the sensing signals, followed by the extraction
of delay and Doppler shifts using a two-dimensional (2D)
discrete Fourier transform (DFT). In [12], the angle, range, and
velocity of targets are sequentially extracted from the received
sensing signals using DFT. In [13], the sensing parameters are
jointly estimated through spectral analysis across the space,
frequency, and time domains. Uplink sensing is studied in
[18], where the initial delay is estimated and refined iteratively,
followed by angle and Doppler estimation. Given the estimated
angle and range, the target locations can be determined from
the corresponding geometric relationships.

The aforementioned works focus on a single BS for monos-
tatic sensing, which may result in limited sensing performance
due to restricted spatial diversity. Moreover, the velocity ob-
tained based on these approaches is only the radial component
deduced from Doppler shifts, while the tangential component
of the velocity is unavailable. Thus, the complete velocity
vector of targets cannot be obtained. To overcome these
limitations, cooperative ISAC has been proposed, utilizing
geographically distributed APs to gather multiview sensing
information. In [19], the angular information of the targets in
a cell-free ISAC system is jointly estimated by distributed APs
using deep neural networks (DNNs). In [20], an iterative angle
estimation scheme is proposed, where the angle is refined
through iterative coarse and fine estimation procedures. In
[21], a cooperative target localization scheme is proposed,
where the angle and range information is first extracted from
the received signals at each AP, followed by selecting a set

of APs with high correlations for cooperative localization. In
[22], a maximum likelihood estimation based target local-
ization scheme is proposed, where the APs collaboratively
estimate the locations of the targets using the transmit data
payload from the uplink. In [23], a two-phase scheme is
proposed for target localization by using cooperative ISAC. In
[24], ranges are first estimated based on a two-dimensional fast
Fourier transform (2D-FFT)-based algorithm. Then, the target
locations are estimated based on the range measurements. In
[25], cooperative ISAC in cell-free MIMO systems is explored,
where each AP employs a compressive sensing (CS)-based al-
gorithm to estimate the range, angle, and radial velocity of the
targets. Then, the CPU determines the targets’ locations and
velocities by leveraging the geometric relationships. In [26],
cooperative ISAC for target sensing based on symbol-level
information is investigated. The APs preprocess the collected
symbols to extract the state parameters and phase features of
the target. The extracted information is then fused at the CPU
for estimating the location and velocity of the target. In [27],
collaborative motion recognition based on distributed ISAC is
studied. A federated edge learning based scheme is proposed
for collaborative recognition while preserving data privacy.

We note that most of the existing works adopt a two-phase
strategy for target localization and velocity estimation, which
can lead to error propagation and potential performance degra-
dation due to inaccuracies in the estimated range, angle, and
radial velocity. In [1], which is the conference version of this
paper, we proposed a DNN consisting of convolutional neural
network (CNN) layers to encode the reflected sensing echoes
and directly estimate the location and velocity of the targets
at the CPU. This approach bypasses the intermediate step of
estimating the sensing parameters (i.e., angle, range, radial
velocity) and improves the sensing performance. However, it
requires each AP to transmit high-dimensional sensing signals
to the CPU for centralized processing, resulting in significant
fronthaul signaling overhead.

B. Related Work on Deep Learning for Signal Compression

Deep learning plays an important role in signal compres-
sion in communication systems [28], which aims to reduce
the signaling overhead for signal feedback from one node
to another. One popular deep learning based approach for
signal compression and feedback is the use of autoencoder
architectures [29], [30]. In these works, an encoder is utilized
by the users to compress the channel state information (CSI)
and generate latent representations with lower dimensions.
The compressed CSI is then fed back to the BS, where
a decoder reconstructs the original CSI. Autoencoder-based
CSI feedback has demonstrated significant improvement in
reconstruction accuracy compared with conventional CS-based
methods. Moreover, variational autoencoders (VAEs) have
been proposed to tackle signal compression [31]. VAEs model
the latent space probabilistically by learning a distribution
over the latent variables. This allows for more robust repre-
sentations that can be beneficial in highly dynamic or noisy
environments. In VAE, the encoder compresses the CSI by
generating a distribution (typically Gaussian) over the latent



space, from which samples are drawn and transmitted to
the BS. The decoder then reconstructs the CSI from these
samples. More recently, vector quantized variational autoen-
coders (VQVAEs) have been utilized due to their ability to
produce discrete latent codes via codebook-based quantiza-
tion [32], [33]. In VQVAEs, the encoder output is mapped
to the nearest codebook entry, resulting in compact index-
based representations that are well suited for quantized digital
feedback. Furthermore, large foundation models have been
developed for wireless applications. These models leverage
transformer models with multi-head attention mechanisms to
capture complex spatial and temporal relationships in wireless
channels and aim to achieve generalizations across different
tasks in wireless systems [34]. By pre-training on large-scale
data, large foundation models can serve as a universal feature
extractor for various tasks in wireless systems.

C. Motivations and Contributions

In this paper, we consider a cooperative ISAC framework
for multistatic sensing in cell-free MIMO systems. Under this
framework, a set of distributed transmit APs send information-
carrying OFDM signals to the communication users. These
signals also reach the sensing targets within the area of
interest, generating sensing echoes. These echo signals are
then collected by a separate set of distributed receive APs.
From the existing works, we observe that there are typically
two approaches for target localization and velocity estimation
within the cooperative ISAC framework. The first approach is
fully distributed sensing [24], where the location and velocity
of the targets are estimated in two phases. Each receive AP first
independently estimates the angle, range, and radial velocity
of each target, and then forwards these parameters to the CPU.
Based on the received parameters, the CPU determines the lo-
cation and velocity of the targets. This approach incurs a small
signaling overhead, as the estimated sensing parameters can be
represented by a small number of bits. However, it may result
in poor sensing accuracy due to estimation error propagation.
The second approach is centralized sensing [14], where the
receive APs send the raw sensing signals to the CPU. The CPU
estimates the location and velocity of the targets based on the
received sensing signals. While this approach can improve the
sensing accuracy by leveraging global information, it suffers
from significant fronthaul signaling overhead for transmitting
the raw sensing signals.

To address the aforementioned issue, in this paper, we
propose to split the entire sensing process between the receive
APs and the CPU, which enables signal preprocessing to be
performed locally at the receive APs. Our proposed approach
reduces the amount of data transmitted over the fronthaul links
while ensuring that useful sensing information is obtained by
the CPU. The CPU can effectively perform target sensing
by fusing the information obtained from all the receive APs,
thereby providing a high sensing accuracy. The main contri-
butions of this paper are summarized below:

• To ensure that the CPU can collect sufficiently accurate
global sensing information while incurring a low sig-
naling overhead over the fronthaul links, we develop a

collaborative processing scheme. In this scheme, signal
preprocessing is performed locally at each receive AP to
compress the sensing signals and extract sensing-related
features, followed by quantization. The receive APs then
send the quantized results to the CPU. Thus, the amount
of data transmitted over the fronthaul links is reduced.
The CPU fuses the information obtained from all the
receive APs to estimate the location and velocity of the
targets. Compared with fully distributed and centralized
sensing approaches, our proposed scheme offers a trade-
off between signaling overhead and sensing performance.

• We propose a distributed vector-quantized variational
autoencoder (D-VQVAE) for collaborative processing,
which is re-architected from the original VQVAE and
tailored for cooperative ISAC in cell-free MIMO systems.
The D-VQVAE network comprises distributed encoders
and codebooks at the receive APs and a decoder at the
CPU. The receive APs encode the reflected sensing sig-
nals locally through their respective encoders. Then, the
encoded continuous latent representations are quantized
into discrete latent feature vectors based on a codebook,
where only the indices of these vectors are transmitted to
the CPU. Finally, the CPU employs a decoder to estimate
the location and velocity of the targets based on the
information obtained from the receive APs.

• We propose a collaborative learning-assisted framework
for end-to-end training of the D-VQVAE network, in
which the receive APs and the CPU jointly optimize
the encoders, codebooks, and decoder by exchanging
intermediate feature representations and gradients. The
mean squared error (MSE) between the network estimates
and ground truth serves as the estimation loss to update
the encoders and the decoder. Codebook entries are re-
fined via the exponential moving average (EMA) scheme
[35]. A commitment loss is employed to encourage the
encoded continuous representations to remain close to
their assigned codewords and ensures convergence.

• We conduct simulations and compare our proposed D-
VQVAE network with five baseline schemes, including
monostatic sensing at a single BS proposed in [13],
a CS-based fully distributed sensing scheme [25], a
MUSIC-based distributed sensing extended from [11],
a CNN-based centralized sensing scheme developed in
our preliminary work [1], and a distributed variational
autoencoder (D-VAE)-based scheme used for an ablation
study. We also include the Cramér-Rao lower bound
(CRLB) for location and velocity estimation to serve as a
performance benchmark. Simulation results demonstrate
the benefits of cooperative ISAC-assisted target sensing
over monostatic sensing. The results also show the per-
formance gains of the proposed D-VQVAE network over
the baseline schemes while incurring a low fronthaul
signaling overhead.

D. Paper Structure and Notations

The rest of this paper is organized as follows. The system
model for cooperative ISAC in cell-free MIMO systems is
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Fig. 1. Illustration of cooperative ISAC for target sensing in a cell-free
MIMO system. The transmit APs send OFDM signals to multiple users for
communication, and these signals are reflected by the targets. The reflected
sensing signals are collected by the receive APs.

introduced in Section II. The proposed D-VQVAE network
is presented in Section III. The collaborative learning-assisted
training is described in Section IV. The performance eval-
uation and comparison are provided in Section V. Finally,
conclusions are drawn in Section VI.

Notations: We use boldface lower case letters and boldface
upper case letters to denote vectors and matrices/tensors, re-
spectively. (·)∗, (·)T, and (·)H are used to denote the conjugate,
transpose, and conjugate transpose of a vector or matrix,
respectively. CN and RN denote the sets of N -dimensional
vectors with complex entries and real entries, respectively.
CN (µ,Σ) denotes the complex Gaussian distribution, where
µ and Σ are the mean vector and covariance matrix, respec-
tively. IN indicates an identity matrix of size N . a[m : n]
denotes the elements ranging from the m-th element to the n-
th element of vector a. We use j to denote the imaginary unit
which satisfies j2 = −1. Re{·} and Im{·} extract the real
part and imaginary part of a complex number, respectively.
E{·} denotes the expected value of a random variable. diag(a)
converts a vector a to a diagonal matrix with the elements of a
on the main diagonal. Finally, ∥·∥2 and ∥·∥F denote the norm
of a vector and the Frobenius norm of a matrix, respectively.

II. COOPERATIVE ISAC IN CELL-FREE MIMO

Consider a cell-free MIMO system with N transmit APs and
M receive APs for cooperative ISAC operation. Each transmit
AP is equipped with Nt antennas and each receive AP has
Mr antennas. All APs are connected to a CPU via fronthaul
links and they are fully synchronized. There are K single-
antenna users, which receive communication signals from the
transmit APs, and Q point-like targets to be sensed in the area
of interest. The transmit APs send OFDM signals to all K
users for communication. These transmit signals also reach the
targets within the area of interest, generating sensing echoes
which are collected by the receive APs. The system model is
shown in Fig. 1. Considering a 2D (x, y) coordinate system,
we define tn = (txn, t

y
n) ∈ R2, n = 1, . . . , N , as the location

vector of the n-th transmit AP. Similarly, let rm = (rxm, rym) ∈
R2, m = 1, . . . ,M , denote the location vector of the m-th
receive AP. We aim to estimate the unknown locations gq =
(gxq , g

y
q ) ∈ R2 of the targets and their associated velocities

Transmit ULA Receive ULA

Target

x

y

(a)

Target

Transmit ULA Receive ULA

x

y

(b)

Fig. 2. AoD θ and AoA ϑ with respect to (w.r.t.) a point-like target. Two
different orientations of the transmit and receive ULAs are shown in (a) and
(b). In (a), the transmit and receive ULAs are aligned in opposite directions.
In (b), the transmit and receive ULAs are oriented with a phase shift between
90◦ and 180◦ relative to each other.

along the x- and y-axes, i.e., vq = (vxq , v
y
q ) ∈ R2 for q =

1, . . . , Q. We define g = [gT
1 · · · gT

Q]
T ∈ R2Q and v =

[vT
1 · · · vT

Q]
T ∈ R2Q. Let ψ = [gT vT]T ∈ R4Q collect

the location and velocity vectors of all targets in the area of
interest, which needs to be estimated by the CPU.

The transmit and receive APs are equipped with uniform
linear arrays (ULAs). The transmit and receive beam steering
vectors are respectively given by

at(θ) =
1√
Nt

[
1 e−j2πdt/λc cos θ

· · · e−j2π(Nt−1)dt/λc cos θ
]T

, (1)

ar(ϑ) =
1√
Mr

[
1 e−j2πdr/λc cosϑ

· · · e−j2π(Mr−1)dr/λc cosϑ
]T

, (2)

where θ and ϑ denote the angle of departure (AoD) and
angle of arrival (AoA), respectively. The definitions of AoD
and AoA are illustrated in Fig. 2, where two different array
orientations of the transmit and receive ULAs are presented.
We assume that the orientations of the transmit and receive
ULAs are known by the CPU. Moreover, dt and dr denote
the transmit antenna spacing and receive antenna spacing,
respectively. λc = c/fc represents the wavelength, where c
denotes the speed of light and fc is the carrier frequency.

A. Signal Model
Let Ns and ∆f denote the number of subcarriers and the

subcarrier spacing, respectively. The OFDM symbol duration
is given by ∆T = 1/∆f + Tp, where Tp is the duration
of the cyclic prefix. Let si[t] = (si,1[t], . . . , si,K [t]) ∈ CK
denote the t-th transmit vector for the K users on the i-th
OFDM subcarrier, where i = 0, . . . , Ns − 1, t = 1, . . . , Ts,
and Ts denotes the number of OFDM symbols. We assume
each element of vector si[t] has unit power and the transmit
symbols are statistically independent, i.e., E{si[t]sHi [t]} = IK .
Let xi,n[t] ∈ CNt denote the signal on the i-th subcarrier
transmitted by the n-th transmit AP during the t-th OFDM
symbol interval. It can be expressed as

xi,n[t] =

K∑
k=1

wi,n,ksi,k[t] = Wi,nsi[t], (3)

where wi,n,k ∈ CNt is the precoder for the k-th user assigned
to the n-th transmit AP for transmission on the i-th subcarrier,



and Wi,n
∆
= [wi,n,1 · · ·wi,n,K ] ∈ CNt×K . The transmit

power of the n-th transmit AP is given by
∑Ns−1
i=0 ∥Wn,i∥2F .

Let P denote the maximum power at each transmit AP. We
have

∑Ns−1
i=0 ∥Wn,i∥2F ≤ P . The precoded signals in (3) are

then transformed into time domain signals via inverse discrete
Fourier transform (IDFT) and a cyclic prefix of period Tp

is inserted to mitigate inter-symbol interference. The time
domain signals are assigned to the corresponding transmit APs.
After digital-to-analog conversion and RF conversion, the RF
signals are emitted with carrier frequency fc by the transmit
AP antennas.

B. Communication Model

Let hi,n,k ∈ CNt denote the communication channel
vector between the n-th transmit AP and the k-th user on
the i-th subcarrier. We stack the channels between the k-th
user and all transmit APs on the i-th subcarrier as hi,k =
[(hi,1,k)

T · · · (hi,N,k)T]T ∈ CNNt . Similarly, by stacking the
beamforming vectors for the k-th user on the i-th subcarrier of
all transmit APs, we obtain the beamforming vector for the k-
th user on the i-th subcarrier as wi,k = [wT

i,1,k . . . wT
i,N,k]

T ∈
CNNt . After down-conversion, analog-to-digital conversion,
cyclic prefix removal, and DFT, the received signal at the k-
th user on the i-th subcarrier during the t-th OFDM symbol
interval can be written as

y
(c)
i,k [t] =

N∑
n=1

(hi,n,k)
Hxi,n[t] + ni,k[t] (4)

= (hi,k)
Hwi,ksi,k[t]︸ ︷︷ ︸

Desired signal

+

K∑
l=1,l ̸=k

(hi,k)
Hwi,lsi,l[t]︸ ︷︷ ︸

Combined interference

+ni,k[t]︸ ︷︷ ︸
Noise

, (5)

where ni,k[t] ∼ CN (0, σ2
c ) is the received noise of the k-th

user on the i-th subcarrier. Conventional MIMO beamforming
techniques, such as maximum ratio transmission, zero-forcing,
and minimum mean-square error (MMSE) beamforming, can
be employed for the design of wi,k. In practice, the channel
vector between each transmit AP and each user can be
estimated through uplink training. In this work, we assume
that the CPU has perfect knowledge of the CSI and employs
centralized MMSE beamforming1 for the transmit APs to
effectively mitigate multiuser interference.

1Similar to [13], [25], we focus on target sensing given a fixed trans-
mit beamforming design. The assumption of perfect CSI and adoption of
communication-centric beamformers leads to a communication performance
upper bound. Imperfect CSI has minimal impact on sensing performance.
Our proposed scheme can also be applied in combination with other transmit
beamforming algorithms and under imperfect CSI conditions.

C. Sensing Model

The transmit signals in (3) are reflected by the targets
within the area of interest and the reflected sensing signals are
collected by the receive APs. Similar to [12], [13], and [25],
we assume that there is a line-of-sight (LoS) path between each
transmit/receive AP and each target2. After sampling and DFT
processing, the received sensing signal during the t-th OFDM
symbol interval on the i-th subcarrier at the m-th receive AP
is given by (6) shown at the bottom of this page. In (6),
βn,m,q ∼ CN (0, χ2) is a complex reflection coefficient, which
includes the effects due to small-scale pathloss and radar cross
section of the q-th target [16]. PL(dn,m,q) = α0(dn,m,q/d0)

−ζ

is the large-scale LoS pathloss coefficient between the n-th
transmit AP and the m-th receive AP via the q-th target, where
α0 is the pathloss at reference distance d0 and ζ is the pathloss
exponent. dn,m,q = dn,q+dm,q is the bistatic range measured
from the n-th transmit AP, via the q-th target, to the m-th
receive AP, where dn,q and dm,q are given as follows:

dn,q = ∥tn − gq∥2, dm,q = ∥gq − rm∥2. (7)

θn,q corresponds to the AoD of the q-th target at the n-th
transmit AP. ϑm,q denotes the AoA of the q-th target at the
m-th receive AP. zi,m[t] ∼ CN (0, ξ2z IMr

) is the observed
noise at the m-th receive AP on the i-th subcarrier during
the t-th OFDM symbol interval. τn,m,q and fD,n,m,q are the
bistatic delay and Doppler frequency shift associated with the
n-th transmit AP and the m-th receive AP via the q-th target,
respectively. They are defined as follows:

τn,m,q =
dn,m,q

c , (8)

fD,n,m,q =
(vn,q + vm,q)

c fc, (9)

where vn,q and vm,q are the radial velocities of the q-th
target w.r.t. the n-th transmit AP and the m-th receive AP,
respectively. If we consider the deployment shown in Fig. 2(a),
where the transmit ULA and receive ULA are oriented with
a 180◦ phase shift relative to each other, the radial velocities
can be expressed as follows3:

vn,q = −vxq cos(θn,q) + vyq sin(θn,q), (10)
vm,q = vxq cos(ϑm,q)− vyq sin(ϑm,q). (11)

We note that the received sensing signal in (6) contains in-
formation about angles (via the AoAs), ranges (via the delays),
and radial velocities (via the Doppler frequency shifts). Our
goal is to estimate the location and velocity of the targets by

2We assume the contributions of the multipath components are small. For
simplicity, we do not consider their impact on sensing channel modeling.
However, we evaluate the impact of multipath components on the sensing
performance via simulations in Section V-D.

3When the transmit and receive ULAs are deployed with different orienta-
tions, the expressions for the radial velocity change accordingly.

yi,m[t] =

N∑
n=1

Q∑
q=1

βn,m,q

√
PL(dn,m,q)e

−j2π(iτn,m,q∆f−tfD,n,m,q∆T )ar(ϑm,q)a
H
t (θn,q)︸ ︷︷ ︸

∆
= Gi,n,m[t]

xi,n[t] + zi,m[t]. (6)



leveraging the sensing signals obtained from multiple receive
APs. Conventional fully distributed sensing approaches [23]–
[25] may suffer from performance degradation due to errors
in the parameters estimated by each receive AP. On the other
hand, DNN-based centralized sensing schemes [1] can learn
to directly map the reflected sensing signals to the target’s
location and velocity, offering higher-accuracy estimates even
in noisy environments. However, this approach incurs a large
fronthaul signaling overhead for forwarding the sensing signals
from the receive APs to the CPU. To address this issue while
guaranteeing high sensing accuracy, in the next section, we
propose a D-VQVAE network for collaborative processing by
the receive APs and the CPU.

III. D-VQVAE FOR COOPERATIVE ISAC-ASSISTED
LOCALIZATION AND VELOCITY ESTIMATION

To balance the sensing accuracy and fronthaul signaling
overhead in cooperative ISAC systems, we propose a col-
laborative processing scheme for target sensing where the
overall task is split between the receive APs and the CPU.
Instead of transmitting high-dimensional raw sensing signals
to the CPU, each receive AP first performs signal compression,
sensing-related feature extraction, and quantization locally.
The quantization results are then forwarded to the CPU. The
information from all receive APs is fused at the CPU for target
localization and velocity estimation.

To facilitate effective compression while extracting essential
information for target sensing, we leverage deep learning
techniques. VAEs [36] are commonly used to reduce the
dimensionality of input vectors or tensors by mapping them
to continuous latent representations with reduced dimensions.
VQVAEs [35] incorporate a vector quantization module into
the VAE framework, enabling the encoding of inputs into dis-
crete latent vectors suitable for efficient digital transmission.
By further extending the VQVAE network, we propose a D-
VQVAE network for collaborative processing by the receive
APs and the CPU in an end-to-end manner. Specifically, each
receive AP first encodes the received reflected sensing signals
into continuous latent features, which are then quantized into a
set of discrete latent vectors using a codebook. The codebook
enables efficient compression by representing the continuous
features as a reduced set of discrete codewords. Each receive
AP forwards only the indices of these codewords to the CPU.
Based on the indices obtained from all receive APs, the
CPU recovers the discrete latent vectors and uses a decoder
to estimate the location and velocity of the targets. In the
following, we provide the details of the encoder, the codebook-
based vector quantization, and the decoder within the D-
VQVAE network.

A. Encoder Design

An encoder is deployed at each receive AP for signal
compression and feature extraction. Given the reflected sensing
signals, shown in (6), at each receive AP, we first concatenate
these signals across all the Ns subcarriers and obtain matrix
Ym[t] = [y0,m[t] · · · yNs−1,m[t]] ∈ CMr×Ns for the m-th
receive AP. We further aggregate the sensing signals for all

Ts OFDM symbol intervals and denote the resulting three-
dimensional (3D) tensor by Ym = [Ym[1] · · · Ym[Ts]] ∈
CMr×Ns×Ts . We extract the real and imaginary parts of Ym,
which are given by Re{Ym} and Im{Ym}, respectively.
Then, Re{Ym} and Im{Ym} are normalized and used as the
input to the encoder of the m-th receive AP.

The reflected sensing signals contain information across
the space, frequency, and time domains, which is critical
for effective feature extraction. To capture these joint 3D
domain features, we employ 3D CNNs in the encoder to down-
sample the 3D signals and extract sensing-related features.
Specifically, the real and imaginary parts of the concatenated
reflected sensing signals, i.e., Re{Ym} and Im{Ym}, are
regarded as two input channels for 3D convolution. At the m-
th receive AP, where m = 1, . . . ,M , Lcnn 3D CNN layers
are employed to downsample the input tensor. The kernel
size is set to 4 with stride 2 and padding 1 to achieve a
downsampling rate of 2. The trainable parameters of the CNN
layers of the encoder at the m-th receive AP are collected
in Φcnn,m. The number of output channels of the last layer
is denoted by H . After downsampling, we employ a residual
network comprising Lres 3D CNN layers with an additional
identity mapping to extract the sensing-related features. This
residual network enables us to learn deep space-frequency-
time domain correlations without suffering from vanishing
gradients, allowing the encoder to capture essential sensing-
related features. The kernel size is set to 3 with padding 1.
We denote the parameters of the residual 3D CNN layers
by Φres,m. We use the rectified linear unit (ReLU) as the
activation function for all the CNN layers. Then, we obtain
the encoded continuous latent features, Ȳm ∈ RH×M̄×N̄×T̄ ,
where M̄ , N̄ , and T̄ are the reduced dimensions of signals
after encoding. Let Em(·;Φenc,m) denote the encoder at the
m-th receive AP, where Φenc,m = {Φcnn,m,Φres,m} collects
all parameters. The encoded continuous latent features can be
expressed as

Ȳm = Em(Ym;Φenc,m). (12)

The architecture of the proposed encoder is illustrated in the
top-left part of Fig. 3.

B. Codebook-Based Vector Quantization

Given the continuous latent features in (12), each receive
AP then employs a vector quantization scheme to transform
the continuous features into discrete latent features. This trans-
formation is achieved by quantizing the encoded continuous
features in (12) based on a codebook. Only the indices of
the selected codewords are forwarded to the CPU, which can
effectively reduce the signaling overhead on the fronthaul link.
In particular, let Cm = [cm,1 · · · cm,Nc

] ∈ RD×Nc denote
the codebook of the m-th receive AP for vector quantization,
which is shared with the CPU. The codebook consists of Nc

codewords, where each codeword cm,j has D dimensions.
Given Ȳm, which contains encoded features of size M̄×N̄×T̄
with each feature represented by a continuous vector of size
H , we aim to quantize each continuous feature vector into a
discrete latent vector based on the codebook.
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Fig. 3. The architecture of the proposed D-VQVAE network. Each receive AP uses an encoder to encode the obtained sensing signals locally, followed by
vector quantization based on a codebook. The indices of the selected codewords are forwarded to the CPU. The CPU recovers the discrete latent feature
vectors based on the indices received. Finally, the location and velocity of the targets are estimated by a decoder.

In particular, Ȳm is first flattened into Ỹm ∈ RH×L, where
L = M̄N̄T̄ denotes the number of continuous feature vectors.
We apply a linear projector with weight Φvq,m ∈ RD×H to
transform Ỹm into Zm = [zm,1 · · · zm,L] ∈ RD×L to match
the dimensionality to that of the codebook. This transformation
can be expressed as follows:

Zm = Φvq,mỸm. (13)

For each vector zm,l, we use a quantizer Q(·;Cm) to compare
it with all the codewords in codebook Cm, and choose the one
which is nearest to it in terms of the Euclidean distance as the
quantization output, Z̄m = [z̄m,1 · · · z̄m,L]:

Z̄m = Q(Zm;Cm), where z̄m,l = cj∗m,l
, (14)

and j∗m,l = arg min
1≤j≤Nc

∥zm,l − cm,j∥22. (15)

Then, the m-th receive AP sends these indices j∗m,l, l =
1, . . . , L, back to the CPU. The codebook-based vector quan-
tization process is shown in the bottom-left part of Fig. 3.

C. Decoder Design

On the CPU side, after it has obtained the indices from
all the receive APs, the discrete latent feature matrix, Z̄m =
[z̄m,1 · · · z̄m,L] ∈ RD×L, m = 1, . . . ,M , can be recon-
structed. The CPU uses a decoder to estimate the location
and velocity of the targets based on the discrete latent feature
matrix and the transmit signals in (3).

In particular, we reshape the discrete latent feature matrix,
Z̄m, of the m-th receive AP into tensor Ẑm ∈ RD×M̄×N̄×T̄ ,
which spans the space-frequency-time domain. We further
concatenate the feature tensors of all the receive APs along
the first dimension and obtain Ẑ ∈ RDM×M̄×N̄×T̄ . We
employ a residual network with Lc

res 3D CNN layers for
feature processing across the space-frequency-time domain.
The corresponding network parameters are collected in ma-
trix Φc

res. Furthermore, given the transmit signals in (3),
which are available at the CPU, we construct a 3D tensor
X ∈ CNNt×Ns×Ts , which aggregates the transmit OFDM
signals across the N transmit APs, Ns subcarriers, and Ts

OFDM symbol intervals. The real and imaginary parts of
X are denoted as Re{X} and Im{X}, respectively, which
are regarded as two channels for 3D convolution. Similar to
the processing of the reflected sensing signals, we employ
Lt
cnn 3D CNN layers to downsample the concatenated transmit

signal X. The parameters of the stacked 3D CNN layers are
collected in matrix Φt

cnn. After downsampling, we employ
a residual network comprising Lt

res 3D CNN layers with
an additional identity mapping to further extract the features
from the space-frequency-time domain. The outputs of the
residual networks are flattened. We then apply linear projectors
with weight matrices Φc

fc and Φt
fc to the flattened vectors,

respectively, to extract the combined and high-level features.
The outputs are concatenated and fed into a fully connected
layer with weight matrix Φfc. Finally, we employ another
fully connected layer with weight matrix Φout to generate
the estimated locations ĝ ∈ R2Q and velocities v̂ ∈ R2Q for
all the targets. Let D(·;Φdec) denote the decoder at the CPU,
where Φdec = {Φc

res,Φ
t
cnn,Φ

c
fc,Φ

t
fc,Φfc,Φout} contains the

decoder parameters. The estimated results can be expressed as

ψ̂ = D
(
{Z̄m}m,X;Φdec

)
, (16)

where ĝ = ψ̂[1 : 2Q] and v̂ = ψ̂[2Q + 1 : 4Q] are
the estimated location and velocity of the targets. For the
q-th target, the estimated location and velocity are given by
ĝq = ĝ[2(q − 1) + 1 : 2q] and v̂q = v̂[2(q − 1) + 1 : 2q],
respectively. The architecture of the decoder is shown in
the right part of Fig. 3. The workflow for the collaborative
processing is illustrated in Fig. 4.

D. Signaling Overhead Analysis

In this subsection, we analyze the fronthaul signaling over-
head incurred by our proposed scheme and compare it with
the fully distributed and centralized sensing schemes.

For the fully distributed sensing scheme, each receive AP
transmits three parameters, i.e., angle, range, and radial ve-
locity, for each target to the CPU. Suppose each parameter
is represented as a single-precision floating-point number,
requiring 32 bits for encoding. With Q targets, the total
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Fig. 4. Each AP encodes the reflected sensing signals locally through its
encoder, then quantizes the encoded feature using a codebook. The CPU
estimates the location and velocity of the targets through a decoder.

fronthaul signaling overhead for each receive AP is equal to
96Q bits, which scales linearly with the number of targets. If
the parameter update frequency is f updates per second, then
the transmission rate will be equal to 96Qf bits per second
(bit/s). However, as we mentioned earlier, this approach may
suffer from estimation error propagation and limited sensing
accuracy, as each receive AP operates independently without
leveraging spatial relationships with other receive APs.

On the other hand, the centralized sensing approach requires
each receive AP to send the raw sensing signals, i.e., Ym

with dimension Mr × Ns × Ts, directly to the CPU for joint
processing. Note that Ym is a complex tensor. Assuming
that each element of the real and imaginary parts of Ym

is represented by a 32-bit floating-point number, the total
fronthaul signaling overhead is given by 64MrNsTs bits.
Given a sensing signal update frequency of f updates per
second, the required transmission rate is 64MrNsTsf bit/s. In
practice, achieving high sensing accuracy necessitates a large
number of antennas, subcarriers, and OFDM symbols, making
Ym typically very high-dimensional. This results in substantial
fronthaul signaling overhead due to the transmission of Ym,
leading to increased latency and bandwidth consumption.
Therefore, while centralized sensing can achieve higher sens-
ing accuracy by leveraging global sensing information, the
significant overhead limits its scalability and efficiency.

Our proposed scheme provides a trade-off between the
fully distributed and centralized sensing approaches. Instead
of sending high-dimensional raw sensing signals, each receive
AP performs local encoding of the received sensing signals
followed by codebook-based quantization. Only the indices
of the selected codewords are forwarded to the CPU. This
can significantly reduce the amount of information exchanged
over the fronthaul links. Specifically, for a codebook of size
Nc, Nb = log2 Nc bits are required to index each codeword.
The fronthaul signaling overhead incurred by each receive
AP is equal to NbL bits, where L is the number of discrete
feature vectors, which depends on the hyperparameters of the
D-VQVAE network. Similar to the fully distributed and cen-
tralized sensing approaches, given the update frequency of f
updates per second, the required transmission rate on the fron-
thaul link is equal to NbLf bit/s. We note that the values of Nb

and L are significantly smaller than the original dimensions of
the sensing signals. Hence, the signaling overhead compared
with the centralized approach is significantly reduced while
the useful sensing information necessary for accurate target
localization and velocity estimation is preserved.

IV. COLLABORATIVE LEARNING-ASSISTED TRAINING OF
THE D-VQVAE NETWORK

To facilitate offline training of the proposed D-VQVAE
network, we apply a collaborative learning framework to
jointly train the receive AP-side networks (i.e., encoder and
codebook) and the CPU-side network (i.e., decoder). The
offline training consists of a forward propagation phase fol-
lowed by backpropagation. The receive APs first encode
their respective sensing signals locally. Then, after vector
quantization, each receive AP forwards the indices to the
CPU. The CPU reconstructs the discrete latent feature vectors
based on the indices and estimates the location and veloc-
ity of the targets through the decoder. This completes the
forward propagation process. For backpropagation, we note
that the quantization operation is non-differentiable, preventing
the gradients from propagating directly through the discrete
codebook-based quantization step. To address this issue, we
apply the straight-through estimator [35], which allows the
gradients to bypass the non-differentiable step. In particular,
the CPU calculates the loss gradients w.r.t. the decoder’s inputs
and directly propagates these gradients to the encoders at the
distributed receive APs.

For offline training, we construct a training dataset D,
which contains Nd data samples. Each data sample consists
of a pair of inputs and labels. The transmit OFDM signals
X and the reflected sensing signals Ym, m = 1, . . . ,M ,
serve as input, while the true location and velocity of the
targets ψ are the labels. We denote the training dataset as
D = {X(d),Y

(d)
1 , . . . ,Y

(d)
M ,ψ(d)}Nd

d=1. The m-th receive AP
only has knowledge of the reflected sensing signals that it has
received, i.e., Ym, m = 1, . . . ,M . The transmit OFDM signal
X is available at the CPU. During training, we assume that
the true location and velocity of the targets, ψ, are available
at the CPU. We further assume that the index of the data
samples in D is known by both the receive APs and the CPU,
and the sampling mechanism is predefined by the CPU and
shared with all the receive APs. Therefore, the network inputs
are paired with the labels during training. The proposed D-
VQVAE network is trained using the Adam optimizer [37].
During the offline training phase, the labels {ψ(d)}Nd

d=1 are
normalized using max-min normalization. The CPU records
the maximum and minimum values for this process. In the
online operation phase, the estimated results are rescaled back
to their normal values based on the recorded maximum and
minimum values.

A. Update of the Encoders, Codebooks, and Decoder

The developed D-VQVAE network is collaboratively trained
between the CPU and the receive APs, which enables joint
optimization of encoders, codebooks, and the decoder.



In particular, we employ the estimation loss Lest to update
the distributed encoders and the decoder by minimizing the
discrepancy between the ground truth and the estimated values.
Considering the MSE between them as the estimation loss, the
estimation loss can be calculated as follows:

Lest =

R∑
r=1

∥Ψ(r) − Ψ̂(r)∥22, (17)

where R denotes the total number of training steps. Ψ(r) =
{ψ(r1), . . . ,ψ(rB)} and Ψ̂(r) = {ψ̂(r1), . . . , ψ̂(rB)} are
batches of labels and outputs in the r-th training step, respec-
tively, with B being the batch size.

The codebooks are updated via the EMA scheme [35].
Denote c

(r)
m,j as the j-th codeword of the m-th receive AP

in the r-th training step. Let {z(r)m,Nj1
, . . . , z

(r)
m,Njr

} denote the
set of continuous feature vectors that have been assigned to
c
(r−1)
m,j , which is the j-th codeword in the (r − 1)-th training

step. Note that Njr is the total number of feature vectors
assigned to the j-th codeword. Then, the EMA accumulators
can be obtained as follows:

L
(r)
m,j = γL

(r−1)
m,j + (1− γ)Njr , (18)

c̃
(r)
m,j = γc̃

(r−1)
m,j + (1− γ)

Njr∑
l=Nj1

z
(r)
m,l, (19)

where L
(0)
m,j is initialized as zero for m = 1, . . . ,M and j =

1, . . . , Nc. Similarly, c̃(0)m,j is initialized as a zero vector. The
j-th codeword at the m-th AP is updated as:

c
(r)
m,j =

c̃
(r)
m,j

L
(r)
m,j

. (20)

Moreover, note that the quantization process introduces a
mismatch between the output of the encoder, zm,l, and the
codeword. This mismatch can make it difficult for the encoder
to learn stable representations. To address this issue, we apply
a commitment loss Lcom to encourage the encoder output to
stay close to the chosen codeword by penalizing deviations:

Lcom = ω
R∑
r=1

L∑
l=1

M∑
m=1

∥∥∥z(r)m,l − sg[c
(r)
j∗m,l

]
∥∥∥2
2
, (21)

where ω is a hyperparameter that scales the commitment loss.
In (21), sg[·] denotes the stop-gradient operator [35], which is
defined as identity during forward computation and has zero
partial derivatives. This can effectively restrict its operand to
remain constant without update during backpropagation. The
stop-gradient operator is applied to each codeword such that
only the output of the encoder is being updated. This loss term
ensures that the encoder commits to producing outputs that are
close to the discrete codebook and helps the encoder learn to
map the input consistently to the learned discrete latent space.

B. Training Procedure

In the following, we explain the collaborative learning-
assisted offline training step by step. The overall training
procedure is summarized in Algorithm 1.

Algorithm 1 Collaborative Learning-Assisted Training
1: Input: Training dataset D, learning rate of the Adam optimizer,

batch size B, and total number of training epochs E.
2: Initialization.
3: for training epoch e = 1, . . . , E do
4: for training step r = 1, . . . , R do
5: Sample a batch of data samples from D.
6: for each receive AP in parallel do
7: Local encoding of the reflected sensing signals.
8: Continuous feature quantization using the codebook.
9: Send the discrete latent features (14) to the CPU.

10: Update its codebook locally.
11: end for
12: Decoding at the CPU.
13: Decoder update at the CPU.
14: The CPU sends the gradient of the discrete latent features

to the corresponding receive APs.
15: for each receive AP in parallel do
16: Update its encoder locally.
17: end for
18: end for
19: end for
20: Output: Trained encoders, codebooks, and the decoder.

Step 1 - Initialization (line 2). The CPU first initializes
the parameters for the encoder, codebook, and decoder as
{Φ(0)

enc,m}Mm=1, {C(0)
m }Mm=1, and Φ

(0)
dec, respectively. Then, the

CPU sends the initialized parameters for the encoders and
codebooks to the corresponding receive APs.

Step 2 - Forward propagation of the receive AP-side network
(lines 7−10). In the r-th training step, each receive AP
draws a batch of input data, Y(r)

m = {Y(r1)
m , . . . ,Y

(rB)
m },

m = 1, . . . ,M . The m-th receive AP encodes the obtained
sensing signals locally and the encoded continuous features
are given by Ȳ(r)

m = {Ȳ(r1)
m , . . . , Ȳ

(rB)
m }, which are further

transformed and then quantized into discrete latent features
Z̄(r)
m = {Z̄(r1)

m , . . . , Z̄
(rB)
m } based on (13) and (14), respec-

tively. Then, each AP forwards the discrete latent features to
the CPU4 and update its codebook locally based on (18)−(20).

Step 3 - Forward propagation of the CPU-side network
(line 12). The CPU draws a batch of its input data, X (r) =
{X(r1), . . . ,X(rB)}, and performs decoding based on the dis-
crete features obtained from the receive APs and the sampled
data X (r). The batch of the decoder output is given by
Ψ̂(r) = {ψ̂(r1), . . . , ψ̂(rB)}, where each element represents
the estimated locations and velocities given the rb-th input in
the batch, rb ∈ {r1, . . . , rB}.

Step 4 - Backpropagation of the CPU-side network (lines 13,
14). Next, we update the network parameters by minimizing
the estimation loss Lest in (17) and the commitment loss Lcom

in (21) during backpropagation. Given the estimated results
Ψ̂(r) and the sampled labels Ψ(r) = {ψ(r1), . . . ,ψ(rB)}, the
gradients of all the layers can be obtained by backpropagation
using the chain rule. The CPU updates the parameters of the
decoder based on the Adam optimizer [37] and obtains Φ

(r)
dec.

When the gradient calculation proceeds to the first layer of

4During training, the codebook at each receive AP is updated locally and
is not shared with the CPU in every epoch. Therefore, the discrete latent
features have to be sent to the CPU for decoding. During online execution,
each receive AP can simply transmit the indices in (15) to the CPU.



Algorithm 2 Online Execution for Target Sensing
1: Given Ym, m = 1, . . . ,M :
2: for each receive AP in parallel do
3: Encode the reflected sensing signals and obtain the encoded

continuous features as in (12).
4: Reshape the continuous features and apply a linear transfor-

mation as in (13).
5: Quantize the features based on the codebook as in (14).
6: Forward the indices (15) to the CPU.
7: end for
8: The CPU estimates the location and velocity of the targets

through the decoder.
9: Output: Estimated location and velocity of the targets ψ̂.

the decoder, the CPU sends the gradients of the discrete latent
features (i.e., inputs to the decoder) back to the corresponding
receive APs.

Step 5 - Backpropagation of the receive AP-side network
(line 16). With the received gradient of the discrete latent
features, each receive AP copies the obtained gradients to its
encoder output (i.e., continuous latent features). The encoder
is then updated through the Adam optimizer by each receive
AP locally5.

Steps 2−5 are iterated for R training steps, and this com-
pletes one training epoch. Let E denote the total training
epochs. After training, we can obtain the trained D-VQVAE
network with its optimized decoder parameters Φ⋆

dec for the
CPU as well as encoder parameters Φ⋆

enc,m and codebook C⋆
m

for the m-th receive AP, m = 1, . . . ,M . Each receive AP then
sends its trained codebook to the CPU for online execution.
During online operation, given the reflected sensing signals
in (6), each receive AP first encodes the signals locally. After
quantizing the encoded features, each receive AP forwards the
corresponding indices to the CPU. The CPU reconstructs the
discrete latent features and estimates the location and velocity
of the targets through the trained decoder. The online execution
of the target sensing is summarized in Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we evaluate the sensing performance of
the proposed D-VQVAE network through simulations. We
consider a cell-free MIMO system with N = 2 transmit APs
and M = 2 receive APs within a coverage area of 100× 100
m2. Consider a 2D (x, y) coordinate system6, the transmit
APs are located at (25, 0) and (75, 0). The receive APs are
placed at (25, 100) and (75, 100). Unless otherwise specified,
we consider each AP has 16 antennas, i.e., Nt = Mr = 16.
The antenna spacing of the ULAs is set to dt = dr = λc/2.
The transmit APs send OFDM symbols to K = 4 users
for communication. The communication symbols are inde-
pendently drawn from a 16-quadrature amplitude modulation

5We assume each receive AP is equipped with a graphics processing unit
(GPU) to enable efficient local model updates and online inference, and has
sufficient memory to store both the encoder network and the codebook.

6In this work, following existing works [11]–[13], [25], we assume all APs
and targets lie in a common horizontal plane and the APs employ ULAs
without elevation diversity. However, the proposed D-VQVAE network can
be extended to 3D scenarios by expanding the network outputs to include the
location and velocity coordinates along the z-axis.
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Fig. 5. The topology considered in simulations. For different channel
realizations, the locations of the APs are fixed, while the users and targets are
randomly distributed in the 100× 100 m2 area.

TABLE I
SYSTEM SETTINGS

Parameter Symbol Value
Carrier frequency fc 30 GHz
Subcarrier spacing ∆f 240 kHz

Number of subcarriers Ns 256
Number of OFDM symbols Ts 256

Cyclic prefix duration Tp 1.04 µs
Reference distance d0 1 m

Pathloss at the reference distance α0 −60 dB
Pathloss exponent ζ 2

Variance of the reflection coefficient χ2 1

Variance of the sensing noise ξ2z −90 dBm

(16-QAM) constellation. A centralized MMSE beamformer is
utilized to precode the transmit symbols. We consider there
are Q = 2 targets within this area. The users and targets are
assumed to be randomly distributed in the area. The system
topology is illustrated in Fig. 5. The velocities of each target in
x and y direction, i.e., vxq and vyq , are assumed to be between
−20 m/s and 20 m/s. We list the parameters of the OFDM
waveform and the channel conditions in Table I. Based on this
system setting, we generate 20,000 data samples with different
channel realizations, where 16,000 of them are used for offline
training of the D-VQVAE network, and the remaining 4,000
data samples are used for online testing. The learning rate
during training is set to 10−4. Note that the data samples
are normalized during training. During online execution, the
estimated results are rescaled back to their normal values. The
hyperparameters are summarized in Table II. Each receive AP
side encoder has approximately 1.2 million parameters, and
the combined encoder plus codebook occupies about 5 MB of
memory. On the CPU side, the decoder consists of 206 million
parameters, corresponding to a model size of approximately
820 MB.

A. Baselines and Benchmark

For performance comparison, we consider the following five
baseline schemes:
• Monostatic sensing by a single BS [13]: This scheme

assumes that the BS operates in full-duplex mode with
perfect self-interference cancellation. The BS transmits
OFDM symbols to K users and receives sensing signals
reflected by the targets. The BS processes the reflected
signals and estimates the angle, range, and radial velocity
of the potential targets. For this scheme, we assume the
BS is located at (50, 0).



TABLE II
HYPERPARAMETERS OF D-VQVAE

Hyperparameters Value

Encoder
Lcnn 2
Lres 2
H 128

Codebook D 512
Nc 32

Decoder
Lt

cnn 2
Lt

res 2
Lc

res 1

• CS-based fully distributed sensing scheme [25]: Given the
sensing signals collected by the receive APs in (6), this
scheme first applies a one-dimensional (1D) CS algorithm
to extract the delay information for range estimation.
Then, the angle and radial velocity of each target are
estimated by each receive AP. The estimated sensing
parameters are then sent to the CPU, based on which
the location and velocity of each target are obtained.

• MUSIC-based distributed sensing: This scheme extends
the monostatic sensing algorithm in [11] to the fully
distributed sensing case. Each AP first estimates the
angles of the targets via the MUSIC algorithm. Then,
range and velocity are estimated through the 2D-DFT
estimation method. The location and velocity of each
target are determined by collecting the estimated sensing
parameters.

• CNN-based centralized sensing scheme [1]: In this
scheme, the CPU directly estimates the location and
velocity of the targets based on the reflected sensing
signals obtained from the receive APs. A DNN architec-
ture is developed, which consists of two 3D CNN layers
with a kernel size 5 for feature extraction, followed by
max pooling. The outputs are then flattened and passed
through three fully connected layers, each containing 256
neurons, to generate the final estimates.

• Distributed VAE (D-VAE)-based scheme: This scheme is
developed for an ablation study, which does not include
the vector quantization module of the D-VQVAE network
in Fig. 3. The encoder and decoder of the D-VAE network
retain the same architecture as their counterparts in the
D-VQVAE network. The receive APs encode their respec-
tive sensing signals locally. Then, the receive APs send
the corresponding encoded continuous latent features to
the CPU, based on which the location and velocity of
each target are estimated at the CPU.

We further derive the CRLB for estimation of ψ =
[gT vT]T ∈ R4Q to serve as a performance benchmark.
We denote β = {βn,m,q}n,m,q , which collects the unknown
complex coefficients, and η = [ψT Re{β}T Im{β}T]T ∈
R4Q+2NMQ. Given the received sensing signals in (6), we
define the noiseless received sensing signal as

ρi,m[t] =

N∑
n=1

Gi,n,m[t]xi,n[t] ∈ CMr . (22)

Let F ∈ R(4Q+2NMQ)×(4Q+2NMQ) denote the Fisher infor-
mation matrix (FIM). The element in the a-th row and the b-th

5 10 15 20 25 30 35 40 45

 P (dBm)

0
0.2
0.4
0.6
0.8

1

1.5

2

2.5

3

3.5

4

R
M

S
E

 o
f 
lo

c
a
ti
o
n
 e

s
ti
m

a
ti
o
n
 (

m
)

Monostatic

CS

MUSIC

CNN

D-VQVAE

D-VAE

Root CRLB

(a)

5 10 15 20 25 30 35 40 45

 P (dBm)

0

0.2

0.4

0.6

0.8

1

1.5

2

2.5

3

R
M

S
E

 o
f 
v
e
lo

c
it
y
 e

s
ti
m

a
ti
o
n
 (

m
/s

)

CS

MUSIC

CNN

D-VQVAE

D-VAE

Root CRLB

(b)

Fig. 6. RMSE for (a) location estimation and (b) velocity estimation versus
the maximum transmit power P .

column of F, i.e., [F]a,b, is given by [38]

[F]a,b = Re

{
2

ξ2z

M∑
m=1

Ns−1∑
i=0

Ts∑
t=1

∂ρi,m[t]H

∂ηa

∂ρi,m[t]

∂ηb

}
, (23)

where ηa (ηb) denotes the a-th (b-th) entry of η, a, b =
1, . . . , 4Q+ 2NMQ. The FIM can be represented as

F =

[
Fψψ Fψβ
Fβψ Fββ

]
,

with Fβψ = FT
ψβ . The partial derivatives of ρi,m[t] w.r.t. each

entry of ψ and β are given in Appendix A. Then, the CRLB
matrix for ψ can be obtained based on the Schur complement
as follows:

CRLBψ =
(
Fψψ − Fψβ F

−1
ββ Fβψ

)−1
. (24)

For the q-th target, the MSE lower bounds are given as:

E
[
(ĝxq − gxq )

2
]
≥

[
CRLBψ

]
2q−1,2q−1

, (25)

E
[
(ĝyq − gyq )

2
]
≥

[
CRLBψ

]
2q,2q

, (26)

E
[
(v̂xq − vxq )

2
]
≥

[
CRLBψ

]
2Q+2q−1, 2Q+2q−1

, (27)

E
[
(v̂yq − vyq )

2
]
≥

[
CRLBψ

]
2Q+2q, 2Q+2q

. (28)

B. Sensing Performance

We evaluate the sensing performance of the considered
schemes, where the root mean squared error (RMSE) results
for location and velocity estimation and root CRLB are shown
in Fig. 6. For the location estimation results shown in Fig. 6(a),
we include all baseline schemes for performance comparison.
In Fig. 6(b), the performance achieved by the monostatic
sensing scheme is not included since only the radial velocity
can be estimated by a single BS. The complete velocity vector
cannot be obtained. In Fig. 6, the root CRLB shows that
the theoretical limits for location and velocity estimation for
P = 30 dBm are under 0.1 m and 0.1 m/s, respectively. It
can be observed that the RMSE for all schemes decreases
with increasing transmit power and eventually saturates to an
error floor. This occurs because the available bandwidth and
number of OFDM symbols limit the sensing resolution and
achievable performance, which causes the RMSE to saturate
at a certain level rather than continuing to decrease with
further increases in transmit power. The results also show



that cooperative ISAC yields significant sensing performance
improvement compared to monostatic sensing by a single BS.
This is because the monostatic sensing scheme relies on a
series of DFT operations and point-wise divisions, making it
susceptible to noise and less robust in noisy environments. In
cooperative ISAC, signals collected from distributed receive
APs provide multiview information, which is more reliable
than single-point observations. When comparing DNN-based
schemes (i.e., CNN, D-VAE, and D-VQVAE) with the fully
distributed sensing schemes (i.e., CS and MUSIC), the fol-
lowing key advantages of deep learning techniques can be
identified. DNN-based schemes leverage the ability to jointly
extract features from the sensing signals collected by multiple
distributed receive APs. This joint feature extraction enables
the network to capture complex space-frequency-time domain
patterns, leading to more accurate and robust target localiza-
tion and velocity estimation. However, for the fully distributed
schemes, each receive AP processes the sensing signals inde-
pendently, without exploiting the spatial dependencies with
other receive APs. Moreover, each receive AP estimates the
sensing parameters (i.e., angle, range, radial velocity) first
before obtaining the location and velocity information of the
targets. By using DNN, the intermediate parameter estimation
stage can be bypassed and the DNNs can determine the
location and velocity of the targets directly based on the
received sensing signals. Thus, any errors associated with
the intermediate stage can be avoided. When comparing the
sensing performance among the three DNN-based schemes, we
observe that the CNN-based approach yields higher estimation
errors than the other two, despite being a centralized sensing
scheme. This limitation stems from the CNN’s inability to
fully capture space-frequency-time features, whereas the more
advanced DNN architectures can better handle the complex 3D
feature extraction. We also notice that the proposed D-VQVAE
network provides comparable sensing performance to the D-
VAE network without quantization. Although quantization
introduces distortion in the latent representations, the collabo-
ratively learned codebooks across receive APs still capture the
essential sensing features, and the discrete codebooks yield
an implicit quantization regularization effect. Consequently,
despite the small quantization error, the developed D-VQVAE
network achieves similar RMSE performance as the D-VAE
network for both target location and velocity estimation, while
significantly reducing the fronthaul signaling overhead.

In Fig. 7, we illustrate the dependence of the sensing
performance on the number of targets Q, with the transmit
power P fixed at 30 dBm. Specifically, we plot the RMSE for
both location and velocity estimation. It can be observed that,
as the number of targets increases, the conventional approaches
(i.e., monostatic sensing and fully distributed sensing schemes)
experience significant performance degradation. This is be-
cause a larger number of targets introduces higher complexity
in separating individual sensing signals within the space-
frequency-time domain, leading to higher mutual interference.
On the other hand, the DNN-based schemes continue to exhibit
satisfactory sensing performance when the number of targets
increases. This is because the CPU jointly processes the
sensing signals or sensing-related features from all receive
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Fig. 7. RMSE for (a) location estimation and (b) velocity estimation versus
the number of targets Q.
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Fig. 8. RMSE for (a) location estimation and (b) velocity estimation versus
the number of OFDM symbols Ts.

APs, leveraging spatial dependencies across distributed APs
to enhance target sensing accuracy. Moreover, the DNN-based
schemes are able to learn the complex latent features from
both the transmit signals and the reflected sensing signals. By
capturing the underlying patterns and correlations within these
signals, the DNN architectures can effectively distinguish the
sensing signals of individual targets, even in the presence of
noise or significant signal overlap. As a result, they maintain
robust accuracy and are better suited to handle the increased
complexity introduced by a larger number of targets.

In Fig. 8, we investigate how the number of OFDM symbols,
Ts, affects the sensing performance. We can observe from Fig.
8(a) that varying the value of Ts does not significantly impact
the location estimation performance. This is because location
estimation relies on the spatial correlations provided by the
sensing signals, which can be captured even with a smaller
number of OFDM symbols. Increasing Ts mainly enhances the
resolution for Doppler estimation, which is critical for velocity
estimation. As can be observed in Fig. 8(b), a smaller number
of OFDM symbols may degrade the velocity estimation per-
formance due to reduced Doppler frequency resolution. How-
ever, our proposed D-VQVAE network demonstrates greater
robustness against this effect. This improved robustness can be
attributed to the D-VQVAE network’s ability to jointly extract
time-domain features from the sensing signals of distributed
receive APs, thereby mitigating the impact of a limited number



4 8 12 16 20 24 28 32

 M
r

0

1

2

3

4

5

6

7

8

R
M

S
E

 o
f 
lo

c
a
ti
o
n
 e

s
ti
m

a
ti
o
n
 (

m
)

Monostatic

CS

MUSIC

CNN

D-VQVAE

D-VAE

Root CRLB

(a)

4 8 12 16 20 24 28 32

 M
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
M

S
E

 o
f 

v
e

lo
c
it
y
 e

s
ti
m

a
ti
o

n
 (

m
/s

)

CS

MUSIC

CNN

D-VQVAE

D-VAE

Root CRLB

(b)

Fig. 9. RMSE for (a) location estimation and (b) velocity estimation versus
the number of antennas at the receive AP Mr.
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Fig. 10. Comparison between the ground truth and the estimated location
and velocity (Q = 2).

of OFDM symbols on velocity estimation.
In Fig. 9, we study the impact of the number of antennas

at each receive AP on the sensing performance. The results
indicate that increasing the number of antennas enhances
localization performance. This improvement is due to the fact
that a larger number of antennas of the receive AP increases
the resolution in the spatial domain, allowing the system to
better separate the sensing signals corresponding to different
targets and differentiate between targets. On the other hand,
the number of receive antennas has little impact on velocity
estimation performance. This is because velocity estimation
primarily relies on the Doppler shift information, which does
not benefit significantly from the increased spatial resolution
provided by additional antennas.

In Fig. 10, we visualize the results for target localization
and velocity estimation and compare the estimated values with
the ground truth. The results in Fig. 10 demonstrate that the
proposed D-VQVAE network achieves a high localization ac-
curacy, yielding estimation errors below 1 m in the considered
cell-free MIMO system. Similarly, the estimated velocity of
the target is also shown to be close to the ground truth, as can
also be observed from the figure.

Next, we study the convergence performance of the pro-
posed schemes in Fig. 11. We evaluate the impact of learning
rate (denoted as “lr” in Fig. 11) on the convergence perfor-
mance. The results indicate that the use of a large learning
rate (e.g., 10−3) may not necessarily lead to convergence to a
desirable trained result. On the other hand, a smaller learning
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Fig. 11. Training loss versus the epoch for different learning rates.

rate (e.g., 10−4 or 10−5) ensures that the developed D-VQVAE
network converges to a satisfactory solution. Furthermore, the
results indicate that a learning rate of 10−4 achieves slightly
lower training loss compared to that of 10−5. Based on these
observations, the learning rate is set to 10−4 for the training
of the D-VQVAE network.

C. Signaling Overhead and Online Execution Runtime

In this subsection, we analyze the signaling overhead in-
troduced in the fronthaul link for the considered schemes.
The analysis is based on the network parameters provided in
Table II. According to the discussion in Section III-D, the
fully distributed sensing scheme requires 96Q = 192 bits for
each receive AP to forward the estimated sensing parameters
to the CPU via the fronthaul link. For centralized sensing, the
fronthaul signaling overhead is significantly higher, which is
given by 2× 32×MrNsTs = 67 Mbit per update.

In our proposed D-VQVAE network, the signaling overhead
is reduced by downsampling the original sensing signals
by a factor of 4 in each dimension. This process signifi-
cantly reduces the number of feature vectors, resulting in
L = M̄N̄T̄ = 16,384. Each feature vector is then quan-
tized using a codebook, where each vector is indexed by its
corresponding codeword. In Fig. 12, we show the RMSE for
location and velocity estimation for varying signaling cost on
each fronthaul link. Note that the fronthaul overhead depends
on the codebook size Nc. The results demonstrate that a
larger codebook reduces the estimation error, as increasing
the codebook size enables more precise quantization of the
latent representations, allowing the discrete latent features to
better capture the useful information from the sensing signals.
It can be observed that the proposed D-VQVAE network
achieves good performance when Nc = 32, corresponding
to a Nb = 5-bit codebook. Increasing Nc further provides
small performance improvements but may introduce additional
complexity to the system. When Nb = 5, the fronthaul
signaling overhead is given by NbL = 82 kbit. Compared
with the centralized sensing scheme which incurs 67 Mbit of
overhead, the proposed scheme reduces the signaling overhead
on the fronthaul link by 99%. Meanwhile, the transmission
from each receive AP to the CPU contains essential sensing
information, ensuring effective target sensing.

Then, in Table III, we evaluate the online execution runtime
for the proposed D-VQVAE network with batch size B = 20.
We conducted the simulations using a computing server with
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Fig. 12. RMSE for location and velocity estimation versus the fronthaul
overhead.

TABLE III
ONLINE EXECUTION RUNTIME

Settings Encoder Quantization Decoder
Nt = Nr = 16
Ns = Ts = 256

6.75 ms 2.51 ms 23.89 ms

Nt = Nr = 8
Ns = Ts = 256

2.25 ms 1.34 ms 5.03 ms

Nt = Nr = 8
Ns = Ts = 128

1.59 ms 1.15 ms 2.42 ms

an Intel Core i7-10700 @ 3.80 GHz CPU and an NVIDIA
GeForce RTX 3070 GPU. We show the computational time
for the encoder, codebook-based quantization, and decoder
under various system configurations. The results in Table
III show that the encoding and codebook-based quantization
can be completed in only a few milliseconds, demonstrating
the minimal computational load on each receive AP and the
overall efficiency of our model.

D. Effect of Multipath Components

In this subsection, we evaluate the impact of multipath
components on sensing performance. In addition to the LoS
sensing channel Gi,n,m[t] shown in (6), we also include the
non-LoS component caused by S clutter scatterers, which is
modeled as:

G̃i,n,m[t] =

S∑
s=1

β̃n,m,s

√
PL(d̃n,m,s)

×e−j2π(iτ̃n,m,s∆f−tf̃D,n,m,s∆T )ar(ϑ̃m,s)a
H
t (θ̃n,s), (29)

where β̃n,m,s ∼ CN (0, χ̃2) denotes the complex reflection
coefficient of the s-th non-LoS scattering path between the
n-th transmit AP and the m-th receive AP. d̃n,m,s, τ̃n,m,s,
and f̃D,n,m,s denote the experienced distance, delay, and
Doppler shift through the s-th scatterer, respectively. θ̃n,s and
ϑ̃m,s represent the AoD and AoA of the s-th non-LoS path,
respectively. We assume the scatterers are randomly distributed
within the area. In Fig. 13, we illustrate the sensing perfor-
mance for different clutter variances, χ̃2 ∈ {1, 0.1, 0.01}, and
different numbers of scatterers, S ∈ {3, 6, 9, 12, 15, 18}. We
train the D-VQVAE network on both LoS channels and on
channels with varying clutter interference levels. It can be
observed that as S increases, the RMSE gradually increases,
since the additional scatterers introduce more clutter inter-
ference and degrade the sensing signal-to-noise ratio (SNR).
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Fig. 13. RMSE for (a) location estimation and (b) velocity estimation versus
the number of scatterers S.
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Fig. 14. RMSE for (a) location estimation and (b) velocity estimation under
imperfect calibration.

Moreover, we notice that under high clutter variance (χ̃2 = 1),
our model can still yield a satisfactory sensing performance,
which demonstrates its ability to tackle such uncertainties and
enable robust sensing.

E. Impact of Clock Asynchronism

Asynchronous local oscillators at the distributed APs intro-
duce clock asynchronism, which can cause timing offset (TO)
and carrier frequency offset (CFO) [39]. Extensive research
has been devoted to time-frequency calibration techniques to
estimate and mitigate these offsets. However, completely elim-
inating TO and CFO is challenging, and small residual offsets
usually remain even after calibration. In this subsection, we
evaluate their impact on the RMSE of location and velocity es-
timation. Let τo,n,m,t ∼ CN (0, σ2

τ ) and fo,n,m,t ∼ CN (0, σ2
f )

denote the residual TO and CFO between the n-th transmit
AP and the m-th receive AP during the t-th OFDM symbol
interval, respectively. The sensing channel with both TO and
CFO can be expressed as follows [39]:

Ḡi,n,m[t] = e−j2πiτo,n,m,t∆fej2πfo,n,m,tt∆T

×
(
Gi,n,m[t] + G̃i,n,m[t]

)
. (30)

In Fig. 14, we evaluate the impact of clock asynchronism on
the sensing performance. The D-VQVAE network is trained
in a dynamic setting that includes LoS channels, multipath
with varying clutter levels, and APs exhibiting different timing
and frequency offsets. The results show that the proposed
network remains robust to the phase errors introduced by un-
synchronized clocks. This is because in ISAC-enabled sensing,



target range and velocity appear as linear phase slopes across
OFDM subcarriers and successive symbols. Although clock
asynchronism introduces random phase shifts at each AP and
perturbs the phase of the observed echoes, the underlying delay
and Doppler information can still be captured by analyzing
the slope patterns when given a sufficient number of OFDM
symbols. Thus, the overall impact of TO/CFO on localization
and velocity accuracy is small, and the proposed D-VQVAE
network can still yield reliable estimates.

VI. CONCLUSION

In this paper, we investigated cooperative ISAC-assisted tar-
get sensing in cell-free MIMO systems. Instead of transmitting
high-dimensional raw sensing signals from each receive AP to
the CPU, we proposed a collaborative processing scheme to
split the target sensing procedure between the receive APs
and the CPU. To achieve this, we developed a D-VQVAE
network, which consists of distributed encoders and codebooks
at the receive APs and a decoder at the CPU. The received
sensing signals are first encoded by the receive APs locally,
followed by codebook-based quantization. Only the indices
of the selected codewords are forwarded to the CPU which
ensures low signaling overhead on the fronthaul links while
providing sufficient sensing information. Our simulation re-
sults demonstrate that our model outperforms existing baseline
schemes and can reduce the signaling overhead by 99% when
compared with the centralized sensing scheme. Moreover,
it exhibits higher robustness to varying numbers of targets
being sensed, ensuring reliable performance in more complex
scenarios. For future work, we will explore joint system-level
optimization, including AP selection, user association, and
beamforming design, together with robust target sensing in
dynamic environments. Moreover, it is important to develop
DNN architectures and training algorithms that can generalize
across varying channel conditions, enabling scalable coopera-
tive ISAC deployment.

APPENDIX A
PARTIAL DERIVATIVES OF ρi,m[t]

Let ϕi,n,m,q[t] = 2π(iτn,m,q∆f − tfD,n,m,q∆T ) and
An,m,q = βn,m,q

√
PL(dn,m,q). The LoS sensing channel

Gi,n,m[t] in (6) can be rewritten as

Gi,n,m[t] =

Q∑
q=1

An,m,qe
−jϕi,n,m,q [t]ar(ϑm,q)a

H
t (θn,q). (31)

Then, for each target q, the partial derivative of ρi,m[t] w.r.t.
gxq can be expressed as in (32), which is shown at the bottom

of this page. Note that ∂ρi,m[t]
∂gyq

can be obtained in a similar
manner. In (32), the partial derivatives of An,m,q , ϕi,n,m,q[t],
and at(θn,q) w.r.t. gxq are given as follows:

∂An,m,q
∂gxq

= βn,m,q
∂

∂gxq

√
PL(dn,m,q)

= An,m,q

(
− ζ

2dn,m,q

)
∂dn,m,q
∂gxq

, (33)

where

∂dn,m,q
∂gxq

=
gxq − txn

∥tn − gq∥
+

gxq − rxm
∥rm − gq∥

, (34)

∂ϕi,n,m,q
∂gxq

= 2π

(
i∆f

∂τn,m,q
∂gxq

− t∆T
∂fD,n,m,q

∂gxq

)
=

2πi∆f

c

∂dn,m,q
∂gxq

, (35)

∂at(θn,q)

∂θn,q
=j

2πdt
λc

diag
(
[0, . . . , Nt − 1]T

)
sin(θn,q)at(θn,q),

(36)
and

∂θn,q
∂gxq

= −
txn − gxq

dn,q

√
1−

(
txn−gxq
dn,q

)2
. (37)

Note that the partial derivative of ar(ϑm,q) w.r.t. gxq can be
obtained in a similar manner as in (36) and (37). Regarding
the partial derivative of ρi,m[t] w.r.t. the velocity components,
we obtain

∂ρi,m[t]

∂vxq
=

N∑
n=1

An,m,q

(
− j

∂ϕi,n,m,q[t]

∂vxq

)
× e−jϕi,n,m,q [t]ar(ϑm,q)a

H
t (θn,q)xi,n[t], (38)

where

∂ϕi,n,m,q[t]

∂vxq
=−2πt∆T

∂fD,n,m,q
∂vxq

(39)

=−2πt∆T
fc
c
(−cos(θn,q) + cos(ϑm,q)).(40)

The partial derivative of ρi,m[t] w.r.t. vyq can be obtained in a
similar manner. Finally, the partial derivative of ρi,m[t] w.r.t.
βn,m,q is given by

∂ρi,m[t]

∂βn,m,q
=

√
PL(dn,m,q)e

−jϕi,n,m,q [t]

× ar(ϑm,q)a
H
t (θn,q)xi,n[t]. (41)

∂ρi,m[t]

∂gxq
=

N∑
n=1

[
∂An,m,q
∂gxq

e−jϕi,n,m,q [t] +An,m,q

(
− j

∂ϕi,n,m,q[t]

∂gxq

)
e−jϕi,n,m,q [t]

]
ar(ϑm,q)a

H
t (θn,q)xi,n[t]

+

N∑
n=1

An,m,qe
−jϕi,n,m,q [t]

[
∂ar(ϑm,q)

∂ϑm,q

∂ϑm,q
∂gxq

aHt (θn,q) + ar(ϑn,q)
∂at(θn,q)

∂θn,q

∂θn,q
∂gxq

]
xi,n[t]. (32)
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