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Abstract—Millimeter wave (mmWave) communication has be-
come a key enabling technology for 5G and beyond networks
because of its large bandwidth and high transmission rate. In
a vehicular mmWave system, beam tracking is a challenging
task due to the user’s fast mobility and narrow beam of
mmWave transmission. In this paper, we study the intelligent
beam tracking scheme with low training overhead for mmWave
vehicular transmission. Specifically, we utilize the past channel
state information (CSI) to efficiently predict the future channel
by designing a machine learning prediction model. Using such
predicted CSI, the base stations (BSs) reduce the number of
channel estimations and save the overhead of pilots. We build
the prediction model based on a long short term memory (LSTM)
structure whose dataset is composed of the channel vectors
of each coherence time duration. The experiments show that
the proposed LSTM can accurately predict the channel of the
vehicular user and achieve satisfactory transmission rate with
less pilot overhead than that of traditional beam training scheme.

Index Terms—Millimeter wave (mmWave) communications,
channel tracking, machine learning, vehicular scenerio.

I. INTRODUCTION

Millimeter wave (mmWave) communication, operating in

frequency bands of 30-300 GHz, is a promising technology for

5G and beyond cellular systems because of its wide frequency

bands [1]. Due to the serious path loss in the mmWave

transmission process, large antenna arrays are usually used

to transmit and/or receive the mmWave signals [2]. Thanks

to the small wavelength of mmWave signals, a large anten-

na array of massive multiple-input multiple-output (MIMO)

systems can be integrated in a small device [3]. A novel

hardware-efficient hybrid precoding/combining architecture is

introduced which only employs a limited number of simple

phase over-samplers (POSs) and a switch (SW) network to

achieve maximum hardware efficiency [4]. Thus, the large

antenna array can provide sufficient beamforming gain with

precoding and combining techniques to overcome severe free-

space path loss of mmWave channels.

Generally, the beam generated by a large antenna array is

very narrow, which means mmWave communications require
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much more precise beam alignments of users compared to

the conventional sub-6 GHz communication systems [5]. In

order to reduce the training overhead and establish stable link

with mobile users, channel/beam tracking is proposed as an

promising approach for mmWave vehicular systems.

Traditionally, the base station (BS) would implement chan-

nel tracking through prediction. Since the channel changing

in adjacent time can be regarded as a first-order Markov

chain, the Kalman filter algorithm can be utilized to track

the time-varying channel [6]. In [7], channel tracking is

realized by separately obtaining the information of angle of

arrival (AoA) and the channel gain. The AoA information

is acquired by a modified unscented Kalman filter and the

gain information is estimated through beam training. In [8],

a high-resolution angle tracking algorithm utilizing auxiliary

beam pair is designed for mobile wideband mmWave systems

with analog beamforming architecture. Experiments in [9]

have shown that multiple BSs cooperation can overcome the

problem of obstacle and establish stable link with mobile users

in vehicular systems. Unfortunately, the aforementioned beam

tracking schemes still lead to unaffordable pilot overhead

due to the fast variation of mmWave channels in vehicular

scenario.

In this paper, we investigate the intelligent channel tranck-

ing scheme with low training overhead in mmWave commu-

nication system. We consider the coordinated multiple BSs

transmission, in which several BSs simultaneously serve one

vehicular user to provide the stable communication link. Based

on the cloud/centralized radio access network (C-RAN), we

propose a machine learning model which learns how to predict

the channel state information (CSI) based on the signals

received at the distributed BSs in uplink training process.

In particular, the proposed machine learning based channel

tracking consists of online training and CSI prediction. A long

short term memory (LSTM) model is built, which employs the

past CSI to promote the prediction of the user’s channel. The

simulation results show that the proposed LSTM model can

accurately predict the channel vector. Then, the beamformer

can be obtained based on the predicted channel, which is

testified to achieve satisfactory transmission quality with sig-

nificantly reduced pilot overhead than that of the traditional
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beam training scheme.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a mmWave multiple-input single-output (MIS-

O) system, where a mobile user is served by N coordinated

BSs, each of which is equipped with M antennas and a

single radio frequency (RF) chain, as illustrated in Fig. 1.

For simplicity, The mobile user is equipped with only one

antenna.

In the uplink training stage, the BSs apply analog-only

beamforming fn, n = 1, . . . , N , via a network of phase

shifters. Let hn ∈ C
M×1 denote the uplink channel vector

between the user and the n-th BS, the combined received

signal at BS n can then be expressed as

yn =
√
P fH

n
hns+ fH

n
vn, (1)

where P represents the received power, s is the transmit

signal, E{|s|2}=1, and vn ∼ N (0, σ2IM ) is the Gaussian

noise corrupting the received signal.

A narrowband mmWave channel model with a line-of-sight

(LoS) path and L non-line-of-signt (NLoS) paths is considered

in our mmWave system. The channel between the BS and

the user can be represented by the commonly adopted Saleh-

Valenzuela channel model. When uniform planar array (UPA)

is applied at the BSs, the channel vector hn from the n-BS

to the user is expressed as

hn =

√

MK

1 +K
ρ0a(θ0, φ0) +

√

M

L(1 +K)

L
∑

l=1

ρla(θl, φl),

(2)

where K is the Ricean K-factor, ρl ∼ CN (0, 1), l =
0, 1, . . . , L, is the complex channel gain of the LoS and NLoS

paths, L is the number of NLoS paths. θl, φl, l = 0, 1, . . . , L,

represent the azimuth and elevation angles, respectively. Fi-

nally, a(θ, φ) is the array response vector, which is given by

a(θ, φ) , ah(θ, φ)⊗ av(θ, φ), (3)

where ⊗ is Kronecker product, the array response vectors
ah(θ, φ) and av(θ, φ) are represented as

ah(θ, φ) =
1

√

M
[1, ej

2π

λ
dsin(θ)cos(φ)

, . . . , e
j(M−1) 2π

λ
dsin(θ)cos(φ)]T ,

av(θ, φ) =
1

√

M
[1, ej

2π

λ
dsin(φ)

, . . . , e
j(M−1) 2π

λ
dsin(φ)]T . (4)

According the duality of the uplink and downlink channels,

the downlink data transmission can be represented as

ŝ =
N
∑

n=1

√

Pnh
H

n
fnsn + z, (5)

where Pn is the transmit power of the n-th BS, and sn is the

transmit signal, E{|sn|2} = 1, z ∼ CN (0, σ2) represents the

noise in downlink communication.

Centralized/Cloud 

Processing

Wireless mmWave 

transmission

Base station Vehicular user

Optical fiber 

connection

Fig. 1. A diagram of the proposed mmWave communication system where
N BSs are installed in a street and simultaneously receive uplink training
signals from one vehicular user. Each BS is equipped with M antennas and
one RF chain, and is applying analog-only beamforming/combining strategy.
The coordinated BSs provide sufficient channel gain for vehicle mobile users.

B. C-RAN Based Millimeter Wave System

Due to the large path loss in the mmWave communication,

the service range of the mmWave BS is smaller than that of

the 4G BS, which leads to the dense coverage of the mmWave

BSs. In such cases, the multi-connection structure becomes the

main way to establish links between the BSs and the mobile

vehicular user. Specifically, when the vehicular user moves in

the edge zone of the BSs service, the user is simultaneously

served by the N BSs existing around. When the vehicular

user moves in the center zone of the BS service, the user is

served by a single BS. This structure not only satisfies the

user’s need for stable transmission rate during the movement,

but also saves resources for BSs.

C-RAN is a green wireless access network architecture,

which allows centralized processing, collaborative radio and

real-time cloud calculation to realize a high reliability, low

latency network. In this way, C-RAN enables multiple dis-

tributed BSs to share the resource processing with each other,

and provides stable communication quality for mobile users.

We mainly study the beam tracking when vehicular users

move in the edge area of BSs service, and our designed C-

RAN-based mmWave system is composed of one cloud and

N coordinated BSs, as shown in Fig. 1.

Under the C-RAN structure, the received information at

each BS is delivered to the central cloud processor through

optical fiber, as illustrated in Fig. 1. In particular, each BS

would obtain the CSI of vehicular user through traditional

channel estimation approach [1], and the estimated channel

vector is given by h̃n, n = 1, . . . , N . All the BSs send

the obtained channel vectors to the central cloud for further

processing. The cloud would combine the channel vectors and

obtain the integrated channel h̃:

h̃ =
[

h̃T

1 , . . . , h̃
T

N

]T

. (6)

Then, the machine learning model can be efficiently ac-
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complished in the cloud based on these data. Note that the

integrated channel vector h̃ means that we only need to

allocate one memory cell for a machine learning model instead

of N memory cells for N BSs. In this way, the processing

for one mobile user can be more concentrated, improving the

efficiency of the mmWave communication.

C. Problem Statement

In this paper, we study the mmWave channel tracking in a

vehicular scenario. We aim to efficiently predict the CSI of the

mobile user based on the machine learning approach to reduce

the training overhead while maintain the tracking accuracy.

Once the machine learning model predicts the CSI, the cloud

will feed back the predicted channel vectors to all BSs and the

BSs calculate the optimal beamformer for downlink transmis-

sion. Specifically, the beamformer design or adjustment for the

n-th BS, n = 1, . . . , N , is accomplished through a codebook

based approach. Let F denote the codebook consisting of

candidate beamformers, which is defined as

F =

{

a

(

2πi

2B
,
πj

2B

)

: i, j = 1, . . . , 2B
}

, (7)

where B indicates the number of bits to quantize the AoAs.

Then, the beamforming vector fn for the n-th BS is chosen

from F to maximize the downlink channel gain:

f⋆
n
= arg max

∣

∣

∣
h̃H

n
fn

∣

∣

∣

2

s.t. fn ∈ F , n = 1, . . . , N,
(8)

h̃n is the predicted channel vector for the n-th BS. Finally,

the achievable downlink sum-rate is

R = log2











1 +

∣

∣

∣

∣

N
∑

n=1
h̃H
n
fn

∣

∣

∣

∣

2

σ2











. (9)

The above procedure is implemented in the cloud. After

the calculation is completed, the cloud transmits the index

of the selected beamformer to each BS through the optical

fiber. According to the beamformer index, each BS generates

the beamforming vector fn, n = 1, . . . , N , and adjusts the

beam direction to the user’s predicted position for downlink

transmission.

III. MACHINE LEARNING BASED CHANNEL TRACKING

Machine learning has attracted considerable attention in re-

cent years due to its intelligent ability to accurately accomplish

identification and prediction. Besides, machine learning is a

key technique to deal with big data and thus can promote the

channel estimation/tracking for mmWave communications.

In this section, we propose a machine learning based

mmWave channel tracking scheme. In order to reduce the

training overhead, we build a LSTM model, which utilize the

past CSI to facilitate the channel prediction. In the following

subsections, we first explain the main idea of the proposed

machine learning based mmWave channel tracking. Then,

we provide detailed operation of the learning and prediction

phases followed by the LTSM modeling description.

A. The Main Idea

Note that the beam/channel tracking can be regarded as a

function of surroundings and the channel variations may have

a regular change with the mobility. In this paper, we propose to

utilize machine learning to establish a connection between the

surroundings and the channel tracking, and accurately predict

the channel vector based on the past CSI. In our proposed

approach, the BSs will rely on the predicted channel obtained

from cloud and do not have to perform channel estimation.

Therefore, the training overhead is reduced and the time spent

on channel estimation can be saved to transfer information.

Specifically, the proposed machine learning based channel

tracking contains two stages, i.e. online training stage and

channel prediction stage. In the online training stage, the

machine learning model studies the relationship between the

moving trail and the surroundings based on the uplink training

pilots. When the learning stage completes, the system moves

into the prediction stage, and the prediction result derived from

the machine learning model is used to design the beamforming

vector for each BS. In order to reduce the training overhead,

we adopt LSTM architecture which can learn from experience.

The LSTM structure can precisely predict the user’s channel

based on the current input (current channel vector) and the

hidden states of LSTM model, and thus the BSs only need

to implement uplink training every other time slot. Next, we

will present the detailed operation of the two-stage machine

learning and the LSTM architecture.

B. Channel Tracking Operation

In this subsection, we introduce the two stages of the

channel tracking operation in details, the procedure is shown

in Fig. 2.

Stage 1. Online Training: In this stage, the vehicular user

sends uplink pilot signals to the surrounding BSs, and each BS

estimates the uplink channel vector according to the received

signals by using traditional channel estimation methods [1].

Then, each BS will determine the optimal beamformer for

downlink transmission based on criterion (8). Meanwhile, all

the BSs will send the estimated results h̃n, n = 1, . . . , N , to

the center cloud for environment learning. In the cloud, the

estimated channel vectors from different BSs are integrated

to form the final estimated channel vector h̃, as demonstrated

in Sec. II. Finally, the neural network of LSTM model is

trained based on the dataset h̃. After the training of LSTM

completes, the tracking system will move into the channel

prediction stage.

Stage 2. Channel Prediction: In this stage, the trained

LSTM model will predict the CSI based on the channel vector

of the last coherence time, and there is no need to implement

additional uplink training at the BSs. The block diagram of

the channel prediction stage is depicted in Fig. 3, in which

t indicates the time slot. Once the LSTM model predicts the

next time slot channel vector ĥ(t+1), the cloud will obtain
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Fig. 2. The machine learning based mmWave channel tracking consists of two stages. During the online training, the learning model will learn the estimated
channel vectors received from the N BSs through optical fiber. In the second stage, the cloud will calculate the predicted channels and feed them back to the
BSs for downlink beamformer design.

the corresponding channel vectors for each BS and feed them

back for downlink beamformer design. Note that we utilize

ĥ and h̃ to indicate the predicted channel by cloud and the

estimated channel by BSs, respectively.

LSTM

layer 2

LSTM

layer 1

LSTM

Beamforming design Beamforming design

Feed back to BSs Feed back to BSs

Fig. 3. The structure of data stream. The datasets h̃ are well trained by a two-
layer LSTM model and the output of the model is the predicted channel vector

ĥ. The predicted channel vector then is considered to design the predicted
beamforming. The final output of the cloud is the predicted beamforming
vectors for all the BSs.

C. LSTM Model

LSTM has the ability to handle the problem with long-term

memory and it is an effective approach for mmWave channel

prediction. In this subsection, we describe the training of the

LSTM model.

The LSTM model introduces an intermediary sort of memo-

ry via the memory cell, and the memory cell includes a node

with a self-connected recurrent edge of weight 1, ensuring

that the gradient can pass without exploding and vanishing.

Compared to recurrent neural network (RNN), which has only

one transfer state ht, LSTM has two transfer states, one ct

(cell state), and one ht (hidden state). Multiplicative gates are

distinctive features of the LSTM model, which are an input

gate it, an output gate ot, and a forget gate kt. If the gate

outputs 0, information through the gate is cut off. If the gate

outputs 1, all messages are passed through the gate.

The block diagram of the LSTM model is illustrated in

Fig. 4. During the time slot t, the inputs of the LSTM model

are xt and the hidden state of the last time slot ht−1. After

multiplicative gates calculate all the outputs, ht and ct are

updated according to the criterion (10)-(15). The hidden state

ht then feeds into the LSTM model at the next time step

as well as the cell state ct. Learning is accomplished by

iteratively updating each of the weights to minimize a loss

function, L(yt, ȳt), which penalizes the distance between the

output yt and the target ȳt. It is worth noting that computation

in the LSTM model proceeds according to the following

calculations which must be evaluated at each time step, which

are

c̃t = φ(Wcxxt +Wchht−1 + bc), (10)

it = σ(Wixxt +Wihht−1 + bi), (11)

kt = σ(Wkxxt +Wkhht−1 + bk), (12)

ot = σ(Woxxt +Wohht−1 + bo), (13)

ct = c̃t ⊗ it + ct−1 ⊗ kt, (14)

ht = tanh(ct)⊗ ot, (15)

yt = σ(Whht), (16)

where Wcx, Wch, Wix, Wih, Wkx, Wkh, Wox, Woh are

weighted matrices, c̃t is an intermediate vector for cell state

ct, bk,bi,bc,bo are biases of LSTM units, σ(·) and φ(·) are

the sigmoid functions for each gate, and finally, ⊗ represents

the element-wise multiplication.
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For our considered channel tracking system, the current

channel estimation result at BSs h̃(t) is the input of the LSTM

model and the next time slot estimated channel h̃(t+1) is the

desired output of current time, which correspond to xt and

the desired output ȳt in the LSTM model, respectively. In

this training procedure, some of the useless information in

the past will be discarded and the prediction results will be

continuously improved based on advanced memory. After the

training, the output of the LSTM is the predicted channel

vector ĥ(t+1), and the difference between it and the actual

channel vector at the next time h(t+1) is negligible.

Fig. 4. The structure of LSTM. We adopt the most classic LSTM model,
consisting of an input gate it, an output gate ot, a forget gate kt and a
memory cell ct. ht−1 is the hidden state of the previous LSTM model,
xt is the input of the current moment, and yt is the output of the current
moment.

IV. SIMULATION RESULTS

In this section, we first describe the process of building

the simulation environment, including system and channel

models, dataset generation, LSTM parameters, and simula-

tion results. The simulations are based on the commercial

simulator Wireless Insite [10], which is a widely used ray-

tracing simulator. The system model and the channel model

can be derived in Section II, and the channel vector can be

constructed by using the parameters generated from Wireless

Insite, such as AoA, AoD, path loss, etc. In Wireless Insite,

we set the frequency of the mmWave at 60Ghz, while the 4

BSs are distributed on the top of the building with a height

of 50 meters. Each BS is equipped with a UPA antenna with

M = 32 antennas and the user is equipped with one single

antenna. The BSs apply analog-only combining via a network

of phase shifters. In order to predict the channel vector of

vehicular mobile users, we construct some random routes with

moving rates ranging from 10 m/s to 30 m/s.

The specific simulation environment is illustrated in Fig. 5.

From Fig. 5, we can see that 4 BSs are placed on different

buildings, and they can cover all the user’s movements. The

green dots represent the movement of the user, and two tracks

can be seen in the figure. The training of the LSTM model

requires a large amount of data, so there are still many random

trajectories in the simulation of the experiment, and these

trajectories are invisible in the figure.

Fig. 5. The simulation environment in Wireless Insite. The transmitters are
the green dots, which are randomly distributed to simulate the movement of
vehicular user. The receivers are the red dots, which are coordinately designed
and built on the top of the buildings. More routes of the transmitters are
invisible and these data can be well trained in the LSTM model.

For each BS, we build up the uplink channel vector with

the channel model in Section II, which will be sent to the

same cloud as the dataset for machine learning model. In the

cloud, the channel vectors of all the BSs are combined and the

final output is h̃. For the n-th BS, it is equipped with a UPA

antenna array with M = 32 antennas. Therefore, with N = 4
BSs serving the same user at the same time, the dimension of

the integrated channel vector h̃ equals 128× 1.

Before the training of neural network, h̃ will be normalized

by the maximum and the minimum value of the vector. In the

LSTM network, the learning rate is set to 0.006, and the batch

size is 20. We build our LSTM network in Tensorflow, and

the rest of the simulation are implemented on MATLAB.

To evaluate the performance of our proposed machine

learning system, we adopt the normalized mean square error

(NMSE) to test the difference between the estimated channel

vector h̃ and the predicted channel vector ĥ, which is defined

as

NMSE =
‖ĥ− h̃‖2
‖h̃‖2

. (17)

In Fig. 6, we consider the NMSE of the channel vector

predicted by the machine learning model with different size

of UPA antennas. We can observe that our machine learning

model will get better prediction results when the number of

antennas decreases. The result of this figure shows that our

machine learning model is well suited for small size UPA

antennas. The reason is that the input of the machine learning

model will become larger when the number of antennas

getting larger, resulting in more difficulties in training the

neural network.

In order to demonstrate that our algorithm can reduce

the pilot overhead, we design the following experiment: We

introduce the concept of the beam coherence time, which

is a recent concept in mmWave communication to represent

the average beam training time [9]. A beam coherence time

consists of two parts: Uplink training and downlink data

transmission. Our algorithm is applied after the BSs estimate

the channel vector once. To be more specific, the BSs estimate
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Fig. 6. The NMSE performance of the LSTM model.
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Fig. 7. Examples of how the proposed machine learning reduce the
overhead. The red dots represent the transmission rate with traditional beam
training algorithm. The blue line represents the transmission rate with machine
learning based beam training algorithm. From the figure we can see that
the traditional algorithm is slightly higher than our algorithm except for the
individual points, and the transmission rates of the two are almost the same
at most moments.

the channel vectors using traditional method and then design

the beamformer in the first beam coherence time. Instead of

estimating the channel vectors, the BSs design the beamformer

using our proposed system in the second beam coherence time.

Since long-term predictions may be inaccurate, we adopt our

algorithm once after a traditional beam coherence time. In this

way, we reduce half the overhead of two beam coherence time

by making the second beam coherence time no overhead.

Fig. 7 shows that how our proposed system reduces the

overhead of mmWave communication, once our machine

learning model can accurately predict the channel vector. In

Fig. 7, we can see that the transmission rates of the two

algorithms are almost the same at most moments. Despite

the transmission rates are the same, our algorithm can reduce

the overhead by half. In the vehicle scenerio, the system we

designed guarantees the same transmission rate as traditional

algorithm, while reducing half the overhead of traditional

algorithms.

V. CONCLUSIONS

In this paper, we investigated a intelligent channel tracking

scheme with low training overhead for mmWave vehicular

transmission. We proposed a machine learning based channel

tracking algorithm which utilizes the past CSI to efficiently

predict the future channel of the vehicular user. In particular,

the proposed machine learning based channel tracking consist-

ed of two stages, i.e. online training stage and CSI prediction

stage. In order to accurately obtain the predicted channel, we

built the prediction model based on a LSTM structure. The

LSTM model was trained by the current estimated channel as

well as the past experience to continuously improve the predic-

tion results. The experiments demonstrated that the proposed

LSTM can accurately predict the CSI of the vehicular user

with less pilot overhead than that of traditional beam training

scheme.
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