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ABSTRACT

Integrated sensing and communication (ISAC) is one of the usage
scenarios for the sixth generation (6G) wireless networks. In this pa-
per, we study cooperative ISAC in cell-free multiple-input multiple-
output (MIMO) systems, where multiple MIMO access points (APs)
collaboratively provide communication services and perform multi-
static sensing. We formulate an optimization problem for the ISAC
beamforming design, which maximizes the achievable sum-rate
while guaranteeing the sensing signal-to-noise ratio (SNR) require-
ment and total power constraint. Learning-based techniques are
regarded as a promising approach for addressing such a nonconvex
optimization problem. By taking the topology of cell-freeMIMO sys-
tems into consideration, we propose a heterogeneous graph neural
network (GNN), namely SACGNN, for ISAC beamforming design.
The proposed SACGNN framework models the cell-free MIMO
system for cooperative ISAC as a heterogeneous graph and em-
ploys a transformer-based heterogeneous message passing scheme
to capture the important information of sensing and communica-
tion channels and propagate the information through the graph
network. Simulation results demonstrate the performance gain of
the proposed SACGNN framework over a conventional null-space
projection based scheme and a deep neural network (DNN)-based
baseline scheme.
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1 INTRODUCTION

Integrated sensing and communication (ISAC) is envisioned to play
an indispensable role in the sixth generation (6G) wireless networks,
supporting immersive communications and pervasive sensing, and
facilitating paradigm shifts towards the metaverse [4, 8, 11, 14].
Benefiting from the terahertz frequency bands and large antenna
arrays, ISAC systems can provide sensing and communication func-
tionalities simultaneously through multiple-input multiple-output
(MIMO) beamforming, where the sensing and communication mod-
ules share the same infrastructure and spectrum resources. Thus,
ISAC can reduce hardware cost and improve the spectral and energy
efficiencies for wireless communication networks.

Extensive efforts have been devoted to theoretical analysis and
testbed development for ISAC beamforming design [3, 8, 15–17].
These works focus on single base station scenarios. In order to
further enhance the spatial degrees of freedom (DoFs), cooperative
communication and multi-static sensing are crucial. This motivates
the investigation of cooperative ISAC in cell-free MIMO systems.
In such cell-free MIMO systems, multiple access points (APs) col-
laboratively provide seamless communication service and receive
uncorrelated sensing observations. The distributed APs are con-
nected to a central processing unit (CPU), which facilitates joint
processing between the APs [1, 2, 6, 9]. In [1, 6], power allocation is
investigated to maximize the sensing performance while ensuring
that the communication performance meets its requirements. Co-
operative ISAC beamforming design in cell-free MIMO networks
is investigated in [2]. A semidefinite relaxation (SDR) based algo-
rithm is proposed for transmit beamforming design which aims
to maximize the sensing signal-to-noise ratio (SNR) while satis-
fying the communication signal-to-interference-plus-noise ratio
(SINR) requirement. In [9], the mode selection of APs is studied for
joint communication and multi-static sensing, where each AP can
operate either as a transmitter or receiver.

The aforementioned works rely on alternating optimization al-
gorithms for power allocation and beamforming design, which can
incur a high computational complexity. Recently, deep learning
techniques, which train the deep neural networks (DNNs) offline
and then deploy the trained models for online optimization, have
proven to reduce the computational complexity of solving optimiza-
tion problems in wireless networks. Among the various types of
DNNs, graph neural networks (GNNs) [5, 10, 13] have demonstrated
significant potential for modeling structured data. This makes them
particularly well-suited for solving optimization problems in wire-
less networks with specific architectures, such as cell-free systems.
Existing GNNs for wireless networks typically account only for
communication functionality, and they primarily focus on extract-
ing and passing the message carried by communication channels.
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ISAC systems, on the other hand, also involve sensing information,
which should be incorporated into the graph modeling and message
passing procedures.

In this paper, we investigate cooperative ISAC beamforming in
cell-free MIMO systems. We develop a heterogeneous GNN, which
is called sensing and communication GNN (SACGNN), for ISAC
beamforming design to maximize the achievable sum-rate while
guaranteeing the sensing SNR and total power constraints. The
proposed SACGNN framework models the cell-free MIMO system
as a heterogeneous graph, with AP antennas and users being differ-
ent types of nodes. Then, we apply a transformer-based message
passing scheme, which extracts important information from sens-
ing and communication channels with attention mechanisms. We
conduct simulations to evaluate the performance of our proposed
SACGNN framework. The results demonstrate the effectiveness of
the proposed approach over a conventional null-space projection
based scheme and a DNN-based baseline scheme.

2 SYSTEM MODEL

We consider a cell-free MIMO system for joint communication and
multi-static sensing. There are 𝑁T transmit APs and 𝑁R receive
APs, which are synchronized and connected to a CPU via fronthaul
links, as shown in Fig. 1. Each AP is equipped with a uniform planar
array (UPA) with 𝑀 = 𝑀v𝑀h antennas, where 𝑀v and 𝑀h denote
the number of antennas in the vertical and horizontal dimensions,
respectively. For a half-wavelength-spaced UPA, the vertical and
horizontal beam steering vectors are respectively given by

bv (𝜃 ) = 1√
𝑀v

[
1 𝑒−𝑗𝜋 cos𝜃 · · · 𝑒−𝑗 (𝑀v−1)𝜋 cos𝜃

]𝑇
, (1)

bh (𝜙, 𝜃 ) =
1√
𝑀h

[
1 𝑒−𝑗𝜋 sin𝜃 cos𝜙 · · · 𝑒−𝑗 (𝑀h−1)𝜋 sin𝜃 cos𝜙

]𝑇
, (2)

where 𝜙 and 𝜃 are the azimuth and elevation angles, respectively.

The beam steering vector can be expressed as a(𝜙, 𝜃 ) ∈ C𝑀 :

a(𝜙, 𝜃 ) = bh (𝜙, 𝜃 ) ⊗ bv (𝜃 ). (3)

The 𝑁T transmit APs jointly communicate with 𝐾 users through
beamforming and steer another beamformer toward a specific loca-
tion for target detection. Note that the beamformers for communi-
cation and sensing share the same waveform and time-frequency
resources. On the other hand, the 𝑁R receive APs obtain the re-
flected echo signals, which are used to determine whether there is
a target at that particular location or not.

2.1 Signal Model

We consider ISAC downlink transmission, where the transmit APs
collaboratively send 𝐾 communication data streams {𝑠𝑘 }𝐾𝑘=1 to
𝐾 users and transmit another data stream 𝑠0 for target detection.
The total number of streams is equal to 𝐾 + 1. Each transmitted
symbol has unit power, i.e., E{|𝑠𝑘 |2} = 1, for 𝑘 = 0, . . . , 𝐾 . We

define s = [𝑠0 · · · 𝑠𝐾 ]𝑇 ∈ C𝐾+1 as the transmitted streams. Similar
to [2], we assume the streams are statistically independent, i.e.,

E{ss𝐻 } = I𝐾+1. Let x𝑖 ∈ C𝑀 denote the transmitted signal at the

CPU

Transmit AP

Receive AP

Communication

Sensing

CommunicC

Figure 1: The system model of cooperative ISAC trans-

mission in a cell-free MIMO system. The transmit APs

jointly communicate with multiple users and sense a target

through beamforming. The receive APs obtain the echo sig-

nal reflected by the target. The transmit and receive APs are

connected to a CPU through fronthaul links.

𝑖-th transmit AP. It can be expressed as

x𝑖 =
𝐾∑
𝑘=1

f𝑖,𝑘𝑠𝑘

︸����︷︷����︸
Communication

+ f𝑖,0𝑠0︸︷︷︸
Sensing

=
𝐾∑
𝑘=0

f𝑖,𝑘𝑠𝑘 = F𝑖s, (4)

where f𝑖,𝑘 ∈ C𝑀 is the beamforming vector of the 𝑖-th transmit AP

for the 𝑘-th data stream. We define F𝑖 = [f𝑖,0 · · · f𝑖,𝐾 ] ∈ C𝑀×(𝐾+1)
as the beamforming matrix at the 𝑖-th transmit AP. The transmit
power at the 𝑖-th transmit AP is given by 𝑃𝑖 = ‖F𝑖 ‖2𝐹 , 𝑖 = 1, . . . , 𝑁T.
Each transmit AP has a constraint on the total power consumption,
i.e., 𝑃𝑖 ≤ 𝑃max, for 𝑖 = 1, . . . , 𝑁T, where 𝑃max is the maximum
transmit power.

2.2 Communication Model

Let h𝑖,𝑘 ∈ C𝑀 denote the channel vector between the 𝑖-th transmit
AP and the 𝑘-th user, 𝑖 = 1, . . . , 𝑁T, 𝑘 = 1, . . . , 𝐾 . Assuming there is
a line-of-sight (LoS) link between each transmit AP and user, the
channel vector h𝑖,𝑘 can be expressed as

h𝑖,𝑘 = 𝛽𝑖,𝑘a(𝜙𝑖,𝑘 , 𝜃𝑖,𝑘 ), 𝑖 = 1, . . . , 𝑁T, 𝑘 = 1, . . . , 𝐾, (5)

where 𝛽𝑖,𝑘 denotes the complex channel gain, and it follows a Gauss-

ian distribution with zero mean and variance 𝜁 2
𝑖,𝑘
. 𝜙𝑖,𝑘 and 𝜃𝑖,𝑘 are

the angles of departure (AoDs) in the azimuth and elevation do-
mains of the 𝑘-th user observed at the 𝑖-th transmit AP, respectively.
By stacking the channel vectors between the 𝑘-th user and all the

transmit APs, we define h𝑘 = [h𝑇
1,𝑘

· · · h𝑇
𝑁T,𝑘

]𝑇 ∈ C𝑀𝑁T . By stack-

ing the beamforming vectors of all the transmit APs for the 𝑘-th
user, we define f𝑘 = [f𝑇

1,𝑘
. . . f𝑇

𝑁T,𝑘
]𝑇 ∈ C𝑀𝑁T . Then, the received

downlink signal at the 𝑘-th user can be expressed as follows:

𝑦
(c)
𝑘

=
𝑁T∑
𝑖=1

h𝐻𝑖,𝑘x𝑖 + 𝑛𝑘 (6)

= h𝐻𝑘 f𝑘𝑠𝑘︸��︷︷��︸
Desired signal

+
𝐾∑

𝑚=1,𝑚≠𝑘

h𝐻𝑘 f𝑚𝑠𝑚

︸����������������︷︷����������������︸
Multi-user interference

+ h𝐻𝑘 f0𝑠0︸�︷︷�︸
Sensing interference

+ 𝑛𝑘︸︷︷︸
Noise

, (7)
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where 𝑛𝑘 denotes white Gaussian noise of the 𝑘-th user with zero

mean and variance 𝜎2
𝑘
. Then, the SINR of the 𝑘-th user, i.e., 𝛾

(c)
𝑘

,

can be obtained as follows:

𝛾
(c)
𝑘

=
|h𝐻
𝑘
f𝑘 |2∑𝐾

𝑚=1,𝑚≠𝑘 |h𝐻
𝑘
f𝑚 |2 + |h𝐻

𝑘
f0 |2 + 𝜎2

𝑘

. (8)

The achievable sum-rate of all 𝐾 users is given by

𝑅 =
𝐾∑
𝑘=1

log2

(
1 + 𝛾

(c)
𝑘

)
. (9)

2.3 Sensing Model

If a target exists at the point of interest, then the transmitted down-
link signals will be reflected by the target and the reflected echo
signal will be collected by the receive APs. Assuming a LoS path
exists between each AP and the target, the echo signal obtained at
the 𝑗-th receive AP, where 𝑗 = 1, . . . , 𝑁R, is given by1

y
(s)
𝑗 =

𝑁T∑
𝑖=1

𝜆𝑖, 𝑗a(𝜑 (rx)
𝑗 , 𝜗

(rx)
𝑗 )a𝐻 (𝜑 (tx)

𝑖 , 𝜗
(tx)
𝑖 )x𝑖 + z𝑗 , (10)

where 𝜆𝑖, 𝑗 is an unknown complex sensing channel gain. 𝜆𝑖, 𝑗 in-
cludes the effects due to path loss and radar cross section of the
target. It follows the Gaussian distribution with zero mean and vari-

ance 𝜒2𝑖, 𝑗 . 𝜑
(tx)
𝑖 and 𝜗

(tx)
𝑖 correspond to the azimuth and elevation

AoDs of the target observed at the 𝑖-th transmit AP, respectively.

𝜑
(rx)
𝑗 and 𝜗

(rx)
𝑗 correspond to the azimuth and elevation angles of

arrival (AoAs) of the target observed at the 𝑗-th receive AP, respec-

tively. z𝑗 ∈ C𝑀 is the noise at the 𝑗-th receive AP, which follows
the complex Gaussian distribution with zero mean and variance of
𝜉2𝑗 I𝑀 .

We define matrix A𝑖, 𝑗
Δ
= 𝜆𝑖, 𝑗a(𝜑 (rx)

𝑗 , 𝜗
(rx)
𝑗 )a𝐻 (𝜑 (tx)

𝑖 , 𝜗
(tx)
𝑖 ) ∈

C
𝑀×𝑀 . A compact form of the obtained echo signal (10) at the

𝑗-th receive AP can be expressed as

y
(s)
𝑗 = A𝑗x + z𝑗 , (11)

where matrix A𝑗 = [A1, 𝑗 · · · A𝑁T, 𝑗 ] ∈ C𝑀×𝑁T𝑀 and vector x =
[x𝑇1 · · · x𝑇𝑁T

]𝑇 ∈ C𝑁T𝑀 . Then, each receive AP forwards the echo

signal (11) to the CPU. The concatenated echo signal obtained from

all the receive APs is given by y(s) = [(y(s)1 )𝑇 · · · (y(s)𝑁R
)𝑇 ]𝑇 ∈

C
𝑁R𝑀 . It can be expressed as

y(s) = Ax + z, (12)

whereA = [A𝑇
1 · · · A𝑇

𝑁R
]𝑇 ∈ C𝑁R𝑀×𝑁T𝑀 and z = [z𝑇1 · · · z𝑇𝑁R

]𝑇 ∈
C
𝑁R𝑀 . The sensing SNR for target detection is given by

𝛾 (s) =
E{‖Ax‖2}
E{‖z‖2} =

∑𝑁R
𝑗=1

∑𝑁T
𝑖=1 𝜒

2
𝑖, 𝑗

Ã𝑖, 𝑗F𝑖
2
𝐹∑𝑁R

𝑗=1 𝜉
2
𝑗

, (13)

where we define Ã𝑖, 𝑗
Δ
= a(𝜑 (rx)

𝑗 , 𝜗
(rx)
𝑗 )a𝐻 (𝜑 (tx)

𝑖 , 𝜗
(tx)
𝑖 ) ∈ C𝑀×𝑀 .

1There are also direct communication links between the transmit and receive APs. We
assume that these direct links are known prior to sensing, and their effects can be
removed from the received echo signal at each receive AP [1]. Moreover, there may
also exist multipath components. Similar to [1, 2], we assume the contribution of the
multipath components is small and can be ignored for simplicity.

2.4 Problem Formulation

In this paper, we consider cooperative ISAC beamforming design to
maximize the achievable sum-rate while guaranteeing the sensing
SNR requirement and the total power constraint at each transmit
AP. The optimization problem can be formulated as follows:

maximize
{F𝑖 }𝑁T

𝑖=1

𝑅 (14a)

subject to 𝛾 (s) ≥ 𝛾min, (14b)

‖F𝑖 ‖2𝐹 ≤ 𝑃max, 𝑖 = 1, . . . , 𝑁T, (14c)

where 𝛾min is the minimum SNR requirement for target sensing.
Note that the optimal solution to problem (14) is intractable due to
the nonconvexity of the objective function. Motivated by the recent
success of applying learning-based techniques to solve nonconvex
optimization problems, we propose a SACGNN framework in the
next section, which leverages graph learning to effectively capture
the structural information of cell-freeMIMO systems and determine

the beamformers {F𝑖 }𝑁T
𝑖=1.

3 PROPOSED SACGNN FRAMEWORK

In this section, we introduce the SACGNN framework for coopera-
tive ISAC beamforming design. The proposed SACGNN framework
models the cell-free MIMO system as a heterogeneous graph and
uses a transformer-based heterogeneous message passing scheme
to extract important sensing and communication features.

3.1 Heterogeneous ISAC Graph Modeling

The considered cell-free MIMO system for cooperative ISAC can be
modeled as a heterogeneous graph, denoted as G = (V, E), which
consists of a set of nodes V and the corresponding set of edges E.
The graph model consists of three types of nodes. The first type
is the transmit AP antenna (tAP) which sends ISAC signals. The
second type is the receive AP antenna (rAP) which obtains the
reflected echo signals for sensing. The third type is the user equip-
ment (UE) which receives communication service. We define the set
of node types asA = {tAP, rAP,UE}, and function𝜓 (𝑉 ) : V → A
which maps a node 𝑉 ∈ V to its node type in A. Accordingly,
the set of nodes can be expressed as V = VtAP ∪ VrAP ∪ VUE,
which consists of tAP node set VtAP = {𝑉tAP,1, . . . ,𝑉tAP,𝑁T𝑀 },
rAP node set VrAP = {𝑉rAP,1, . . . ,𝑉rAP,𝑁R𝑀 }, and UE node set
VUE = {𝑉UE,1, . . . ,𝑉UE,𝐾 }. Each pair of tAP and UE nodes is con-
nected by an undirected edge, with the channel coefficient being
their edge feature. In particular, as shown in Fig. 2, h𝑖,𝑘 (𝑚) serves
as the edge feature between node 𝑉tAP,(𝑖−1)𝑀+𝑚 and node 𝑉UE,𝑘 .
Note that h𝑖,𝑘 (𝑚) represents the𝑚-th element of vector h𝑖,𝑘 , where
𝑖 = 1, . . . , 𝑁T, 𝑘 = 1, . . . , 𝐾,𝑚 = 1, . . . , 𝑀 . The tAP nodes are also
connected with the rAP nodes. Ã𝑖, 𝑗 (𝑚,𝑛) serves as the edge feature
between node 𝑉tAP,(𝑖−1)𝑀+𝑛 and node 𝑉rAP,( 𝑗−1)𝑀+𝑚 . Note that

Ã𝑖, 𝑗 (𝑚,𝑛) denotes the element in the𝑚-th row and 𝑛-th column

of matrix Ã𝑖, 𝑗 , for 𝑖 = 1, . . . , 𝑁T, 𝑗 = 1, . . . , 𝑁R,𝑚 = 1, . . . , 𝑀, 𝑛 =
1, . . . , 𝑀 .

3.2 Heterogeneous Message Passing

Consider a SACGNN framework with 𝐿 hidden layers and denote

g(𝑙) [𝑉 ] as the hidden state of the 𝑙-th layer of node𝑉 ∈ V . Denote
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Figure 2: The heterogeneous graph model of a cell-free

MIMO system for cooperative ISAC.

N(𝑉 ) as the set of neighboring nodes that have edges connected
to node 𝑉 ∈ V . In each layer, each node updates its own hidden
state based on the aggregated message passed from its neighboring
nodes. Due to node heterogeneity, the features related to various
types of nodes may fall into different feature spaces. It is crucial to
handle the diverse feature information and capture the important
features. In this work, we apply a transformer [12] based scheme
to determine the attention scores for the set of neighbors, which
takes the importance of node heterogeneity into consideration.

In particular, we first initialize the hidden state for each node
based on the edge features shown in Fig. 2. For a tAP node 𝑉tAP,𝑖 ∈
VtAP, where 𝑖 = 1, . . . , 𝑁T𝑀 , the initial hidden state g(1) [𝑉tAP,𝑖 ] ∈
C
𝐾+𝑁R𝑀 for the first layer combines the edge features associated

with the 𝑖-th tAP node. It is given by

g(1) [𝑉tAP,𝑖 ] =
[
h 
 𝑖

𝑀 �,1 (𝑖 −𝑀 
(𝑖 − 1)/𝑀�), · · · ,
h 
 𝑖

𝑀 �,𝐾 (𝑖 −𝑀 
(𝑖 − 1)/𝑀�), Ã 
 𝑖
𝑀 �,1 (𝑖 −𝑀 
(𝑖 − 1)/𝑀�, 1),

· · · , Ã 
 𝑖
𝑀 �,1 (𝑖 −𝑀 
(𝑖 − 1)/𝑀�, 𝑀), Ã 
 𝑖

𝑀 �,2 (𝑖 −𝑀 
(𝑖 − 1)/𝑀�, 1),

· · · , Ã 
 𝑖
𝑀 �,𝑁R

(𝑖 −𝑀 
(𝑖 − 1)/𝑀�, 𝑀)
]𝑇

, (15)

where 
·� represents the floor function. Similarly, for a rAP node

𝑉rAP, 𝑗 ∈ VrAP, where 𝑗 = 1, . . . , 𝑁R𝑀 , the initial value g(1) [𝑉rAP, 𝑗 ] ∈
C
𝑁T𝑀 is characterized by the edge features associated with the 𝑗-th

rAP node, which can be written as

g(1) [𝑉rAP, 𝑗 ] =
[
Ã
1, 
 𝑗

𝑀 � (1, 𝑗 −𝑀 
( 𝑗 − 1)/𝑀�), · · · ,
Ã
1, 
 𝑗

𝑀 � (𝑀, 𝑗 −𝑀 
( 𝑗 − 1)𝑀�), Ã
2, 
 𝑗

𝑀 � (1, 𝑗 −𝑀 
( 𝑗 − 1)/𝑀�),

· · · , Ã
𝑁T, 
 𝑗

𝑀 � (𝑀, 𝑗 −𝑀 
( 𝑗 − 1)/𝑀�)
]𝑇

. (16)

For a UE node 𝑉UE,𝑘 ∈ VUE, where 𝑘 = 1, . . . , 𝐾 , the initial value

g(1) [𝑉UE,𝑘 ] ∈ C𝑁T𝑀 is given by

g(1) [𝑉UE,𝑘 ] =
[
h1,𝑘 (1), · · · , h1,𝑘 (𝑀), · · · , h𝑁T,𝑘 (𝑀)]𝑇 . (17)

After initialization, for a node 𝑉𝑡 ∈ V with its hidden state
vector being g(𝑙) [𝑉𝑡 ] in the 𝑙-th (𝑙 > 1) layer, our goal is to ex-
tract the important features from its neighbors 𝑉𝑠 ∈ N (𝑉𝑡 ) and
update its hidden state for the next layer, i.e., g(𝑙+1) [𝑉𝑡 ], through
a transformer-based heterogeneous message passing scheme. By

applying a residual connection, the updated hidden state g(𝑙+1) [𝑉𝑡 ]

can be expressed as follows:

g(𝑙+1) [𝑉𝑡 ] = 𝑓agg
(
𝑓att

(
𝑉𝑡 , g

(𝑙) [𝑉𝑡 ]
) · 𝑓msg

𝑉𝑠 ∈N(𝑉𝑡 )

(
g(𝑙) [𝑉𝑠 ]

) ) +g(𝑙) [𝑉𝑡 ],
(18)

where 𝑓agg (·), 𝑓att (·), and 𝑓msg (·) represent the functions for aggre-
gation, attention calculation, and message calculation, respectively.
The function 𝑓msg (·) is responsible for extracting the message car-
ried by the neighbors of node𝑉𝑡 . The importance of each neighbor-
ing node is evaluated through function 𝑓att (·). Finally, the weighted
message of the set of neighbors is aggregated through 𝑓agg (·) to
obtain the updated hidden state for node 𝑉𝑡 .

We use a multi-head self-attention mechanism in function 𝑓att (·).
Considering 𝑁h self-attention heads, for the ℎ-th attention head, we

map the hidden state g(𝑙) [𝑉𝑡 ] of node 𝑉𝑡 ∈ V into the ℎ-th query

vector q
(𝑙)
ℎ

[𝑉𝑡 ] through a linear projector 𝜇q (· ;Wq
ℎ
) with a weight

matrix W
q
ℎ
. Similarly, the hidden state g(𝑙) [𝑉𝑠 ] of a neighboring

node 𝑉𝑠 ∈ N (𝑉𝑡 ) with type 𝜓 (𝑉𝑠 ) is projected into the ℎ-th key

vector k
(𝑙)
ℎ

[𝑉𝑠 ] with a linear projector 𝜇k,𝜓 (𝑉𝑠 ) (· ;Wk
ℎ,𝜓 (𝑉𝑠 ) ). Note

thatWk
ℎ,𝜓 (𝑉𝑠 ) is the weight matrix and different types of nodes have

their own unique projectors with different weight matrices. Then,
we calculate the similarity between the query and the key as the

product
(
k
(𝑙)
ℎ

[𝑉𝑠 ]
)𝑇
Watt

𝜓 (𝑉𝑠 )q
(𝑙)
ℎ

[𝑉𝑡 ], where Watt
𝜓 (𝑉𝑠 ) is the weight

matrix. By concatenating all the 𝑁h self-attention heads together,
we can obtain the overall attention vector for node𝑉𝑡 . The function
𝑓att (·) can be expressed as follows:

𝑓att
(
𝑉𝑡 , g

(𝑙) [𝑉𝑡 ]
)
= softmax

𝑉𝑠 ∈N(𝑉𝑡 )

(
ℎ

{(
k
(𝑙)
ℎ

[𝑉𝑠 ]
)𝑇
Watt

𝜓 (𝑉𝑠 )q
(𝑙)
ℎ

[𝑉𝑡 ]
})

, (19)

q
(𝑙)
ℎ

[𝑉𝑡 ] = 𝜇q (g(𝑙) [𝑉𝑡 ];Wq
ℎ
), (20)

k
(𝑙)
ℎ

[𝑉𝑠 ] = 𝜇k,𝜓 (𝑉𝑠 )
(
g(𝑙) [𝑉𝑠 ];Wk

ℎ,𝜓 (𝑉𝑠 )
)
, (21)

where ‖
ℎ
{·} represents the concatenation operation.

The information from the neighboring nodes is extracted through
function 𝑓msg (·). Similar to 𝑓att (·), for the ℎ-th attention head,

the hidden state g(𝑙) [𝑉𝑠 ] of a neighboring node 𝑉𝑠 ∈ N (𝑉𝑡 ) is
mapped into a value vector v

(𝑙)
ℎ

[𝑉𝑠 ] through a linear projector

𝜇v,𝜓 (𝑉𝑠 ) (· ;Wv
ℎ,𝜓 (𝑉𝑠 ) ). The multi-head message is calculated by:

𝑓msg
(
g(𝑙) [𝑉𝑠 ]

)
=

ℎ

{
v
(𝑙)
ℎ

[𝑉𝑠 ]Wmsg
𝜓 (𝑉𝑠 )

}

=

ℎ

{
𝜇v,𝜓 (𝑉𝑠 )

(
g(𝑙) [𝑉𝑠 ];Wv

ℎ,𝜓 (𝑉𝑠 )
)
W

msg
𝜓 (𝑉𝑠 )

}
, (22)

where W
msg
𝜓 (𝑉𝑠 ) is the weight matrix. Finally, the calculated multi-

head attention scores and messages from all the neighboring nodes
are aggregated followed by an activation operation. We use the
rectified linear unit (ReLU) as the activation function. The hidden
state of node 𝑉𝑡 in layer (𝑙 + 1) is then updated as follows:

g(𝑙+1) [𝑉𝑡 ] = W
agg
𝜓 (𝑉𝑡 )ReLU

(
sum

(
𝑓att (𝑉𝑡 , g(𝑙) [𝑉𝑡 ])

· 𝑓msg
𝑉𝑠 ∈N(𝑉𝑡 )

(g(𝑙) [𝑉𝑠 ])
) ) + g(𝑙) [𝑉𝑡 ], (23)

where W
agg
𝜓 (𝑉𝑡 ) denotes the weight matrix to update the hidden

state of the node 𝑉𝑡 . We show the heterogeneous message passing
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Figure 3: Transformer-based heterogeneous message pass-

ing. Given node𝑉𝑡 and its hidden state g(𝑙) [𝑉𝑡 ], as well as the

neighboring nodes 𝑉𝑠1, 𝑉𝑠2 ∈ N (𝑉𝑡 ) and their hidden states

g(𝑙) [𝑉𝑠1] and g(𝑙) [𝑉𝑠2], the hidden state g(𝑙+1) [𝑉𝑡 ] for node𝑉𝑡
is updated through a transformer-based heterogeneousmes-

sage passing scheme.

scheme in Fig. 3. By stacking all the 𝐿 hidden layers, the constructed

SACGNN can generate a representation g(𝐿) [𝑉𝑡 ] for each node
𝑉𝑡 ∈ V . The hidden states of the final layer for the tAP nodes, i.e.,

g(𝐿) [𝑉𝑡 ] for𝑉𝑡 ∈ VtAP, are then used for the transmit beamforming
design. We apply a linear transformation of weight Wout to the

hidden states g(𝐿) [𝑉𝑡 ] with𝑉𝑡 ∈ VtAP. The outputs are normalized
to satisfy the power constraint (14c), and we obtain the designed

beamforming matrix for all the transmit APs, i.e., F ∈ C𝑁T𝑀×(𝐾+1) ,
where the beamforming matrix for the 𝑖-th transmit AP is given by

F𝑖 = F((𝑖 − 1)𝑀 + 1 : 𝑖𝑀) ∈ C𝑀×(𝐾+1) , 𝑖 = 1, . . . , 𝑁T.

3.3 Loss Function

We construct a training data sample as (H, Ã), whereH = {h𝑖,𝑘 }𝑁T,𝐾
𝑖,𝑘

and Ã = {Ã𝑖, 𝑗 }𝑁T,𝑁R
𝑖, 𝑗 . The training dataset is given by D = {(H(1) ,

Ã(1) ), . . . , (H(𝑁tr) , Ã(𝑁tr) )}, where 𝑁tr is the total number of train-
ing samples. The developed SACGNN is trained in an unsupervised
manner. In particular, we reformulate the objective function in (14)
and define the loss function as follows:

L = −𝑅 + 𝜌ReLU(𝛾min − 𝛾 (s) ), (24)

where the sensing SNR requirement (14b) is moved to the objec-
tive with a penalizing coefficient 𝜌 . The developed SACGNN is
trained to minimize the loss function (24) using Adam optimizer
[7] in an unsupervised manner. After training, the trained model
can be applied for online beamforming design. When given the
communication channel vectors2 and AoDs/AoAs of the target to
be detected, the network can generate the beamforming vectors for
the transmit APs to achieve a high sum-rate while guaranteeing
the sensing SNR requirement.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the developed
SACGNN framework for cooperative ISAC beamforming. The simu-
lation settings are as follows. We consider there are 𝑁T = 2 transmit

2We note that channel estimation is an important topic and there exist various es-
timation methods that can be applied to obtain the channel vectors. For simplicity,
we assume perfect channel state information is available at the CPU which is widely
adopted in the existing works (e.g., [1, 2, 9]).
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Figure 4: The achievable sum-rate versus theminimum sens-

ing SNR requirement 𝛾min, where 𝑃max = 30 dBm.

APs and 𝑁R = 2 receive APs to cover a 200× 200 m2 area. Consider-
ing a three-dimensional (3D) [x, y, z] coordinate, the transmit APs
are located at [0, 100, 20] and [200, 100, 20]. The receive APs are
placed at [100, 0, 20] and [100, 200, 20]. Each AP is equipped with
a UPA of 𝑀v = 4 vertical antennas and𝑀h = 16 horizontal anten-
nas. We consider there are 𝐾 = 4 users. The users and the target
are assumed to be randomly distributed in the area, with x and y
coordinates ranging from 0 to 200, and the z coordinate ranging
from 0 to 35. We adopt the normalized system parameters [2]. In
particular, the variance of communication channel gain 𝜁 2

𝑖,𝑘
is set to

0.5, 𝑖 = 1, . . . 𝑁T, 𝑘 = 1, . . . , 𝐾 . The variance of communication noise
𝜎2
𝑘
at the𝑘-th user,𝑘 = 1, . . . , 𝐾 , and the variance of sensing noise 𝜉2𝑗

at the 𝑗-th receive AP, 𝑗 = 1, . . . , 𝑁R, are set to 1. The variance of the
sensing channel gain 𝜒2𝑖, 𝑗 is set to 0.1, 𝑖 = 1, . . . , 𝑁T, 𝑗 = 1, . . . , 𝑁R.

We set the number of hidden layers 𝐿 to two. The learning rate
is set to 10−4. We generate 10, 000 data samples, where 8, 000 of
them are used for offline training and 2, 000 are used for testing. We
compare the performance of our proposed SACGNN framework
with two other baseline methods: (i) null-space projection based
beamformer for sensing and regularized zero-forcing beamformer
for communication (NS-RZF) proposed in [2]; (ii) a DNN-based
scheme which consists of three 3D convolutional neural network
layers followed by a fully-connected layer.

In Fig. 4, we show the achievable sum-rate under different sens-
ing SNR requirements. The maximum transmit power 𝑃max is set
to 30 dBm. We can observe that as the sensing requirement be-
comes more stringent, the achievable sum-rate decreases since
more power is allocated to the sensing beamformer. The results
demonstrate that the proposed SACGNN framework outperforms
the NS-RZF scheme proposed in [2]. The NS-RZF scheme designs
the sensing beamformer to be in the null space of the commu-
nication channels and manages inter-user interference through
regularized zero-forcing. This scheme may not perform well since
the communication channels of users and the target are usually
correlated with each other, leading to reduced null space of the
communication channels. Moreover, the proposed SACGNN frame-
work also outperforms the DNN-based baseline approach. This is
due to the fact that the beamforming design needs to simultane-
ously address both communication and sensing features, leading to
additional complexity in the design process. Typical 3D convolu-
tional neural networks may not be sufficient to capture the intricate
interplay between communication and sensing information. The
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Figure 5: The achievable sum-rate versus the maximum

transmit power 𝑃max, where 𝛾min = 30.

results in Fig. 4 demonstrate the performance gain of the proposed
SACGNN framework.

In Fig. 5, we show the achievable sum-rate versus the maxi-
mum transmit power, under a fixed sensing SNR requirement, i.e.,
𝛾min = 30. Similarly, we observe that the proposed approach con-
sistently provides a higher sum-rate compared to the other two
baseline methods. In particular, in the low transmit power regime
(𝑃max = 20, 25 dBm), the NS-RZF scheme fails to satisfy the sensing
SNR requirement. This is because the sensing and communica-
tion channels exhibit high correlations, resulting in a limited null
space dimension of the communication channels and consequently
a marginal sensing beamforming gain.

Finally, the beam patterns generated by one of the transmit APs
using our proposed SACGNN framework are shown in Fig. 6, where
a 3D view and the azimuth cut are presented. The results are gen-
erated based on the following settings. The four users are located
at [40, 40, 30], [140, 40, 20], [140, 140, 20], and [40, 140, 30], respec-
tively. The target is located at [115, 115, 25]. The view is captured
from a transmit AP located at [0, 100, 20]. It can be observed from
Fig. 6 that the generated beamformer can effectively manage the
side lobes and interference, even when the target to be detected is
close to a communication user.

5 CONCLUSION

In this paper, we investigated the cooperative ISAC beamform-
ing design in cell-free MIMO systems. We proposed a SACGNN
framework which models the cell-free MIMO system for coopera-
tive ISAC as a heterogeneous graph and uses a transformer-based
scheme for heterogeneous message passing. We conducted sim-
ulations for performance evaluation and included two baseline
methods for comparison. Simulation results showed that the pro-
posed SACGNN framework outperforms a conventional null-space
projection based scheme and a DNN-based baseline scheme. More-
over, results demonstrated that the proposed SACGNN framework
can generate narrow beamformers toward users and the target,
where the side lobes can be effectively managed.

ACKNOWLEDGMENTS

The work is supported in part by the Government of Canada Inno-
vation for Defence Excellence and Security (IDEaS) program and
the Digital Research Alliance of Canada (alliancecan.ca).

(a) A 3D view of the beam pattern. (b) The azimuth cut of the beam pattern.

Figure 6: Beam patterns captured at a transmit AP located at

[0, 100, 20].
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