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Abstract—Wireless traffic prediction is indispensable for net-
work planning and resource management. Due to different pop-
ulation distributions and user behavior, there exist strong spatial-
temporal variations in wireless traffic across different regions. Most
of the conventional traffic prediction approaches can only tackle a
particular spatial-temporal pattern and cannot capture such vari-
ations in wireless traffic. This motivates us to develop an adaptive
approach which can tackle spatial-temporal variations and predict
wireless traffic in different regions. In this paper, we formulate an
adaptive traffic prediction problem from a probabilistic inference
perspective and develop a variational spatial-temporal Bayesian
meta-learning (VST-BML) algorithm. We model the traffic pre-
diction in different regions as different prediction tasks. The pro-
posed VST-BML algorithm can learn the common spatial-temporal
features shared by all prediction tasks, and adaptively infer the
task-specific parameters to tackle spatial-temporal variations. We
evaluate the performance of our proposed VST-BML algorithm
using a real-world traffic dataset. Experimental results show that
the proposed algorithm can quickly adapt to different prediction
tasks by using only a small number of data samples and provide
accurate traffic prediction in different regions. When compared
with five baseline methods, the proposed algorithm can reduce the
root-mean-square error (RMSE) and mean absolute error (MAE)
by 53.0% and 48.4%, respectively.

Index Terms—Adaptive traffic prediction, Bayesian meta-
learning, deep neural networks, spatial-temporal variations.

I. INTRODUCTION

A. Background

THE increasing popularity of smartphones and Internet of
things (IoT) devices leads to an explosive growth of wire-

less data traffic. In order to allocate and utilize network resources
efficiently, wireless service providers require accurate results
on traffic prediction and forecasting [1], [2], [3]. By predicting
future traffic load, wireless service providers can dynamically
allocate network resources and improve the spectral and en-
ergy efficiencies. Moreover, proactive measures can be taken to
guarantee the diverse quality of service (QoS) requirements of
different use cases in the current fifth-generation (5G) and future
sixth-generation (6G) wireless networks [4]. Therefore, traffic
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prediction is important for network planning and optimization,
and is becoming an indispensable prerequisite to facilitate the
fusion of artificial intelligence (AI) and wireless networking [5],
[6], [7].

Existing approaches for wireless traffic prediction aim to
predict the most likely sequences of traffic data in a geographical
region given some previous observations. In general, a region is
divided into multiple grid cells,1 which have the same size. The
traffic prediction is performed on a cell basis [8], [9], [10]. There
exist temporal dependencies in the wireless traffic which can
be utilized for prediction. Moreover, user mobility introduces
spatial correlations into traffic across neighboring grid cells,
which also needs to be taken into consideration when predicting
the traffic. Approaches to solving the traffic prediction problem
can be classified into two categories: traditional statistical meth-
ods and deep learning based algorithms. The algorithms in the
first category (e.g., autoregressive integrated moving average
(ARIMA) [11]) are usually applied to simple wireless traffic
conditions and small datasets. They lack the capability to either
tackle high-dimensional time series data or capture the complex
spatial-temporal features. On the other hand, deep learning based
algorithms have gained increasing attention in recent years and
have become state-of-the-art approaches for traffic prediction.
The procedures for deep learning based traffic prediction are
as follows [8]: (i) Collect sufficient traffic data samples under
a certain sampling rate (e.g., every 10 minutes) from the grid
cells in a region; (ii) Apply deep learning tools to train a neural
network using the dataset obtained in step (i); (iii) Deploy the
trained neural network to predict future traffic in this region.
In order to obtain accurate predicted results, it is essential for
the trained neural network to capture the temporal dependency
in traffic data and the spatial correlation among distributed grid
cells.

Various deep neural networks have been developed for spatial-
temporal modeling and wireless traffic prediction. Recurrent
neural networks (RNNs) [12] and long short-term memory
(LSTM) networks [8], [13] are proposed for extracting tempo-
ral features from time series traffic data. Convolutional neural
networks (CNNs) [8], [14], [15] are typically used to capture
the spatial dependency of wireless traffic in a region. The con-
volutional LSTM (ConvLSTM) network is developed in [16] to
analyze both the spatial and temporal dependencies. Graph neu-
ral networks (GNNs) can also be applied for traffic prediction.

1In wireless traffic prediction problems, a grid cell may cover multiple cellular
base station towers. The wireless traffic in a grid cell is the aggregate traffic from
all the cellular base station towers within the cell.
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Fig. 1. Spatial-temporal patterns of wireless traffic in different regions.
(a) Spatial patterns of the traffic; (b) Temporal patterns of the traffic.

GNNs learn the spatial-temporal dependencies of traffic data via
feature propagation and aggregation [17], [18], [19], [20], [21],
[22].

B. Motivation

Although the existing works on wireless traffic prediction can
capture the spatial-temporal dependencies and predict wireless
traffic in a particular region, the prediction strategy learned by
those algorithms may not be able to accurately predict traffic in
other regions which have different spatial-temporal patterns. We
note that understanding the wireless traffic across different re-
gions is important for global network infrastructure planning and
deployment, as well as cross-region resource management [3],
[4], [5]. However, it is challenging to predict traffic in different
regions due to spatial-temporal variations.

The spatial-temporal pattern can vary significantly in different
regions due to different population distributions and user behav-
ior. As an example, in Fig. 1, we use a real-world traffic dataset
provided by Telecom Italia [23] to show the spatial-temporal
variations across different regions. The data is collected from
the city of Milan in Italy. Fig. 1(a) shows the heat map of the
traffic volume in Milan. Each pixel corresponds to a grid cell. The
brightness of each pixel represents the volume of the wireless
traffic in the corresponding grid cell. We select two regions
(shown in those two yellow boxes in Fig. 1(a)) to illustrate the
spatial variations. It can be observed that the traffic volume in
Region 1 (located in the central area) is much higher than that
in Region 2 (located in the northwestern area). The traffic has
different distributions and spatial patterns in these two regions.
The temporal patterns of the wireless traffic are illustrated in
Fig. 1(b). We show the traffic volume over 100 hours (i.e.,
approximately four days) in two grid cells which are selected
from Regions 1 and 2, respectively. It can be observed that
although the traffic volume exhibits periodicity in the temporal
domain, the maximum and minimum values of traffic volume
of those two cells in Regions 1 and 2 are different. The grid cell
in Region 1 has a higher traffic volume than that in Region 2.
During peak hours every day, the traffic curve of the grid cell
in Region 1 exhibits more fluctuation than the one in Region 2.
The results in Fig. 1(b) indicate that there exist strong temporal
variations across different regions.

In order to accurately predict future wireless traffic in different
regions that have diverse spatial-temporal patterns, sufficient
data samples are required for the training of models, with each

model targeting a region with a specific spatial-temporal pattern.
However, data collection can be time-consuming and training
multiple models requires significant computational resources.
Moreover, the distribution of traffic data is unbalanced due to
different population distributions and densities. Wireless traffic
in urban regions (e.g., downtown) has a large amount of data
samples available for training. On the other hand, in rural re-
gions, only limited data samples can be collected and the amount
of data samples may not be sufficient for training. This motivates
us to develop an adaptive prediction algorithm, which can tackle
spatial-temporal variations and adapt to traffic prediction in
different regions using only a small number of data samples.

C. Contributions

In this paper, we study the adaptive traffic prediction prob-
lem and propose a variational spatial-temporal Bayesian meta-
learning (VST-BML) algorithm. We model the traffic prediction
in different regions as different prediction tasks. The proposed
VST-BML algorithm learns a set of globally shared parameters,
which can extract the common spatial-temporal features shared
by all tasks and adaptively determine the task-specific parame-
ters to tackle spatial-temporal variations. The main contributions
of this paper are summarized as follows:
� We formulate the adaptive traffic prediction problem from

a probabilistic inference perspective based on the latent
variable model. We derive the objective function for the
optimization of the global parameters by using the evidence
lower bound (ELBO). The task-specific parameters are
modeled as latent variables conditioned on the global pa-
rameters, such that given the optimized global parameters,
the task-specific parameters can be adaptively determined.

� We propose a VST-BML algorithm, which learns the global
parameters and determines the task-specific parameters
through a variational spatial-temporal (VST) network.
The VST network consists of an extractor, an amorti-
zation network, and a generator. The extractor can cap-
ture the shared spatial-temporal features. We propose a
dual-attention mechanism to be deployed in the extractor,
which enables the network to focus on the most important
spatial-temporal features shared by all tasks. The amortiza-
tion network determines the distribution over task-specific
parameters. The generator predicts the traffic given the
commonly shared spatial-temporal features and the task-
specific parameters.

� We adopt the Bayesian meta-learning (BML) algorithm
for the training of the VST network. The proposed VST
network is trained based on a distribution of prediction
tasks. After training, the VST network can adapt to new
prediction tasks which have different spatial-temporal pat-
terns. The use of BML enables the proposed VST network
to quickly adapt to different prediction tasks using only a
few data samples.

� We evaluate the performance of the proposed VST-BML
algorithm based on a real-world wireless traffic dataset
and compare it with five baseline methods. They in-
clude ARIMA [11], ConvLSTM network [16], multi-view
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spatial-temporal graph network (MVSTGN) [18], spatial-
temporal cross-domain network (STCNet) [9], and spatial-
temporal transformer (ST-Tran) [10]. When compared with
the baseline methods, experimental results show that the
proposed VST-BML algorithm can reduce the root-mean-
square error (RMSE) and mean absolute error (MAE) by
53.0% and 48.4%, respectively.

� For further evaluation of the proposed VST-BML algo-
rithm, we compare the predicted results with the ground
truth in different regions which have diverse spatial-
temporal patterns in wireless traffic. It is shown that our
proposed algorithm can accurately predict wireless traffic
under different spatial-temporal patterns by using only
five data samples. This demonstrates the fast adaptation
capability of our proposed algorithm. We also evaluate the
effect of the dual-attention mechanism on the prediction
accuracy through a set of ablation experiments. Results
demonstrate the capability of the dual-attention mechanism
on spatial-temporal feature extraction.

The rest of this paper is organized as follows. In Section II, we
summarize the related work. Section III provides a preliminary
analysis on spatial-temporal variations in wireless traffic across
different regions. Section IV describes the problem formation
for adaptive traffic prediction and presents the proposed VST-
BML algorithm. Section V illustrates the experimental results
for performance evaluation. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

We now summarize some of the recent works on deep learning
based wireless traffic prediction algorithms. In [13] and [24],
LSTM networks are used to capture the temporal dependency
of time series data and predict future traffic load. In [8], an
autoencoder is developed for spatial feature extraction and an
LSTM network is used to learn the temporal dependency. In [16],
a ConvLSTM network is proposed, which replaces the matrix
multiplication with convolutional operations in an LSTM cell
to extract the spatial and temporal features. In [15], a spatial-
temporal network is proposed for traffic prediction. It includes
a ConvLSTM and three-dimensional convolutional (Conv3D)
layers to capture the spatial-temporal dependencies. In [25], an
attention-embedded CNN is developed to learn the local short-
term and long-term spatial-temporal dependencies for traffic
prediction. In [17], a GNN-based predictive algorithm is pro-
posed which models the spatial-temporal correlations of wire-
less traffic using a graph representation. In [18], an MVSTGN
algorithm is developed which embeds the attention modules into
a GNN to capture the global and local spatial-temporal features.
In [19], a graph attention spatial-temporal network is proposed.
It learns the spatial and temporal features of wireless traffic
through a spatial relation graph and an attention-based RNN
structure, respectively. In [9], STCNet is proposed which uses
cross-domain knowledge (e.g., the information from point of
interest distribution) to improve the prediction accuracy. ST-Tran
is developed in [10]. It has two transformer blocks for spatial and
temporal feature extraction. In [26] and [27], side information

(e.g., weather conditions) is used to enhance traffic prediction
performance. In [20], [21], [22], user mobility patterns are
adopted to facilitate traffic prediction in wireless networks.
Traffic prediction based on distributed training architecture is
investigated in [28], where a hierarchical aggregation structure
is introduced for local training and central aggregation.

The aforementioned works study spatial-temporal dependen-
cies for traffic prediction in a particular region. Those works
do not consider the spatial-temporal variations and the trained
models cannot be generalized to different regions. Although
multiple models can be trained with each model targeting a
region with a specific spatial-temporal pattern, data collection
can be consuming and network training is resource-demanding.
To address the above issues, in this paper, we propose a VST-
BML algorithm, which can quickly adapt to traffic prediction in
different regions using a small number of data samples.

III. PRELIMINARY ANALYSIS ON SPATIAL-TEMPORAL

VARIATIONS IN WIRELESS TRAFFIC

In Section I, we briefly explain the spatial-temporal variations
in wireless traffic and show the spatial-temporal patterns in
different regions. To gain more insights into spatial-temporal
variations, in this section, we first provide a more detailed
investigation of the spatial-temporal dependencies in wireless
traffic and show how this dependency can vary across different
regions. The following data analysis of wireless traffic is based
on a real-world dataset [23] provided by Telecom Italia. The
traffic data was collected from Nov. 1, 2013 to Jan. 1, 2014 in
Milan, Italy, with a sampling rate of 10 minutes. The area of
Milan city is divided into 100× 100 grid cells, with each grid
cell covering an area of 235× 235 m2. A region is defined as an
area which contains a group of grid cells. The dataset includes the
call detail records (CDRs) in Milan. We use the traffic volume
of voice call to analyze the spatial-temporal variations across
different regions. Similar to the work in [9], we aggregate the
traffic data into hourly scale. A timestamp is used to indicate the
time when wireless traffic was collected. The interval between
two consecutive timestamps is one hour.

Each region has M ×N grid cells. Let R denote the set of
regions. Consider region i ∈ R, the wireless traffic across the
M ×N grid cells at the t-th timestamp can be represented as a
matrix Di,t ∈ R

M×N :

Di,t =

⎡
⎢⎢⎣
d
(1,1)
i,t d

(1,2)
i,t · · · d(1,N)

i,t
...

...
...

d
(M,1)
i,t d

(M,2)
i,t · · · d(M,N)

i,t

⎤
⎥⎥⎦ , (1)

where d
(m,n)
i,t denotes the traffic volume in grid cell (m,n)

of region i at the t-th timestamp. Let vector d
(m,n)
i =

(d
(m,n)
i,1 , . . . , d

(m,n)
i,T ) denote a sequence of traffic data with T

timestamps. We use a three-dimensional (3D) tensor Di =
[Di,1, . . . ,Di,T ] ∈ R

T×M×N to represent theT -timestamp traf-
fic volume across M ×N cells in region i.
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Fig. 2. Temporal autocorrelations of wireless traffic in two grid cells selected
from different regions in Milan. Region 1 is in the central area. Region 2 is in
the northwestern area.

The wireless traffic in each region has a specific spatial-
temporal dependency. In particular, there exists temporal au-
tocorrelation in the traffic sequence d

(m,n)
i for each grid cell

(m,n) in region i. Due to user mobility, there also exists spatial
correlation among neighboring grid cells. Moreover, the tempo-
ral autocorrelation and spatial correlation may vary significantly
in different regions, which indicates strong spatial-temporal
variations. In the following subsections, we consider two dif-
ferent regions in the city of Milan, i.e., Region 1 in the central
area and Region 2 in the northwestern area, to illustrate the
spatial-temporal variations.

A. Analysis on Temporal Variations

The sample autocorrelation function [29], as a function of time
lag l, is widely used for the evaluation of temporal dependency.
The autocorrelation function for a T -sequence of traffic data
d
(m,n)
i in grid cell (m,n) of region i is given by:

γ
(m,n)
i (l) =

∑T−l
t=1

(
d
(m,n)
i,t − d̄

(m,n)
i

)(
d
(m,n)
i,t+l − d̄

(m,n)
i

)

∑T
t=1

(
d
(m,n)
i,t − d̄

(m,n)
i

)2 ,

0 ≤ l < T, (2)

where d̄
(m,n)
i =

∑T
t=1 d

(m,n)
i,t

T represents the mean value of the
traffic in grid cell (m,n) of region i.

In Fig. 2, we show the temporal autocorrelations of wireless
traffic in two grid cells selected from Regions 1 and 2. From
Fig. 2, we can observe that the wireless traffic is temporally
autocorrelated in both cells. However, the traffic in the cell from
Region 1 has a similar autocorrelation with the traffic in the next
24, 48, and 72 hours. That is, when the time lag l is equal to
24, 48, and 72, the autocorrelation values are all between 0.15
and 0.17. On the other hand, the traffic in the cell from Region
2 has a much higher autocorrelation when the time lag l is equal
to 24 hours (the autocorrelation is equal to 0.52). This indicates
that the wireless traffic in these two cells has different temporal
dependencies. The reasons for the temporal variations can be
due to heterogeneous user behavior, which influences the trend
of wireless traffic in the temporal domain.

Fig. 3. Spatial correlations of wireless traffic in two different regions in Milan.
Region 1 is in the central area. Region 2 is in the northwestern area.

B. Analysis on Spatial Variations

We use the Pearson correlation coefficient [30] to model
the spatial correlation between two neighboring grid cells in a
region. A higher Pearson correlation indicates a stronger spatial
dependency. The Pearson correlation coefficient for two grid
cells (m,n) and (m′, n′) in region i is defined as

ρi =
cov

(
d
(m,n)
i ,d

(m′,n′)
i

)

σ
d

(m,n)
i

σ
d

(m′,n′)
i

, (3)

where cov(·) represents the covariance operation, and σ is
the standard deviation. To investigate the variation in spatial
correlations, we select two different regions from the dataset.
Fig. 3 shows the heat map of the Pearson correlations across
the cell groups from Regions 1 and 2, which correspond to the
upper and lower triangular parts, respectively. Both cell groups
have the same size of coverage area, i.e., 705× 705 m2. The
cells in each region are indexed from 1 to 9 for simplicity. Both
cells follow the same index order. For example, cells 1 and 2 in
Region 1 are adjacent to each other, so are cells 1 and 2 in Region
2. From Fig. 3, we can observe the spatial correlations across the
group of grid cells within each region. Although the cell groups
in both regions have the same spatial relationships, the spatial
correlations across grid cells in Region 2 are higher than those
in Region 1. In particular, the Pearson correlation coefficients in
Region 2 are all above 0.8. Grid cells 8 and 9 are highly correlated
with grid cells 3− 5 (the Pearson correlation coefficient is 1.0).
On the other hand, in Region 1, the spatial correlations between
grid cells 8, 9 and 3− 5 are much lower. Grid cells 5 and 8 in
Region 1 have the lowest Pearson correlation coefficient, which
is 0.39.

In summary, results from Figs. 2 and 3 show that wireless
traffic is highly spatial-temporal dependent and has a specific
spatial-temporal pattern in a region. However, the dependency
can vary significantly across different regions, which makes
accurate traffic prediction in different regions a challenging
problem. In the next section, we develop a VST-BML algorithm
to tackle the spatial-temporal variations and solve the adaptive
traffic prediction problem.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 22,2025 at 22:51:21 UTC from IEEE Xplore.  Restrictions apply. 



6624 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

IV. PROPOSED VST-BML ALGORITHM FOR ADAPTIVE

TRAFFIC PREDICTION

In this section, we propose a VST-BML algorithm to address
the spatial-temporal variations in different regions. We first
introduce the adaptive traffic prediction model and formulate
the problem from a probabilistic inference perspective. We then
present the VST-BML algorithm which can adaptively predict
wireless traffic in different regions.

A. Adaptive Traffic Prediction Model

The goal of traffic prediction in a particular region is to predict
the traffic volume of the next Q timestamps using the previous
P traffic observations. This can be achieved by using deep
learning techniques, which train a neural network and obtain
the network parameters using sufficient pairs of P -timestamp
observations (i.e., network input) andQ-timestamp ground truth
(i.e., label) in a region. The trained network takes new traffic
observations as input and returns the corresponding predictions
(for the same region) as output. However, such networks may not
be able to provide accurate predictions in other regions due to
spatial-temporal variations. When considering traffic prediction
in different regions, we aim to develop an adaptive traffic pre-
diction network. Given the traffic observations from any region
i ∈ R, the adaptive network can provide the corresponding
traffic prediction results in region i.

1) Prediction Task, Support Set, and Query Set: We model
traffic prediction in different regions with diverse spatial-
temporal patterns as different prediction tasks. We use τi ∼
γ(T ) to denote a prediction task in region i, where γ(T )
represents the distribution of prediction tasks. Let Di de-
note the dataset for task τi, which contains multiple input-
label pairs, i.e., P -timestamp observations (input) and Q-
timestamp ground truth (label) in region i. The dataset Di

is further partitioned into a support set Ds
i and a query set

Dq
i , where Ds

i ∪ Dq
i = Di and Ds

i ∩ Dq
i = ∅. Given an arbitrary

timestamp t, we use tensor X
(t)
i = {Xi,t−P+1, . . . ,Xi,t} ∈

R
P×M×N to denote the P -timestamp observations and tensor

Y
(t)
i = {Yi,t+1, . . . ,Yi,t+Q} ∈ R

Q×M×N as theQ-timestamp
ground truth in support set Ds

i, where {Xi,p}tp=t−P+1 and

{Yi,q}t+Q
q=t+1 have a similar form as in (1). Similarly, ten-

sors X̃
(t)
i = {X̃i,t−P+1, . . . , X̃i,t} ∈ R

P×M×N and Ỹ
(t)
i =

{Ỹi,t+1, . . . , Ỹi,t+Q} ∈ R
Q×M×N denote the observations and

ground truth in query set Dq
i , respectively. We consider the

support setDs
i containsNs pairs of {X(ts)

i }Ns
s=1 and {Y(ts)

i }Ns
s=1,

which correspond to the observations and ground truth of wire-
less traffic at timestamp ts, for s = 1, . . . , Ns. The query set Dq

i

contains Nq pairs of data samples {X̃(tq)
i , Ỹ

(tq)
i }Nq

q=1, which are
the observations and ground truth of traffic at timestamp tq (dif-
ferent from those timestamps in support set), for q = 1, . . . , Nq.

We aim to develop an adaptive network parameterized by a
set of global parameters θ, such that given the data samples in
support set Ds

i, the network parameterized by θ can adaptively
determine a set of task-specific parameters φi which are used
for traffic prediction on the disjoint query set Dq

i for task τi.

Note that only a small number of data samples are available in
the support set [31]. This is due to the fact that in real-world
wireless systems, there may be limited traffic data available in
some particular regions. Moreover, collecting a large amount
of data samples along with data processing and computation
is time-consuming and may lower the efficiency of network
adaptations to different prediction tasks. In order to effectively
utilize the limited data samples in support set Ds

i and achieve
fast adaptation to prediction task τi, in the following, we formu-
late the adaptive traffic prediction problem from a probabilistic
inference perspective by using the latent variable model.

2) Preliminaries of Latent Variable Model: In this subsec-
tion, we present the preliminaries of the latent variable model.
Letx denote the observed wireless traffic data. We are interested
in obtaining the distribution p(x) of the observed data. By using
the latent variable model, the observed data x is determined
by a latent distribution p(z), where z represents the latent
variables. The data x is generated by a conditional distribution
p(x | z). The goal in the latent variable model is to determine the
posterior distribution of latent variables z, i.e., p(z | x), given
the observed data x, which can be expressed as:

p(z | x) = p(x, z)∫
p(x, z)dz

. (4)

However, the posterior distribution is difficult to calculate as
the integral in the denominator is high dimensional. A general
solution is to approximate the posterior distribution by another
distribution qξ(z) characterized by parameters ξ [32]. The close-
ness of these two distributions is measured by the evidence
lower bound (ELBO). Maximizing the ELBO ensures qξ(z) to
approach the posterior distribution p(z | x). The ELBO L(ξ) is
defined as [32]:

L(ξ) = Ez∼qξ(z)[log p(x | z)]−DKL(qξ(z) || p(z)), (5)

where DKL corresponds to the Kullback-Leibler (KL) diver-
gence between distributions qξ(·) and p(·). Minimizing the KL
divergence encourages the distributions qξ(·) and p(·) to be
similar.

3) Problem Formulation for Adaptive Traffic Prediction:
Based on the latent variable model described above, we now
present the problem formulation and derive the objective func-
tion for adaptive traffic prediction. Recall that the goal is to
learn a set of global parameters θ of the adaptive network. The
adaptive network can determine the task-specific parameters φi

for traffic prediction on the query set Dq
i of task τi. We model

the task-specific parameters φi as latent variables and model the
query set Dq

i as the observed data. For each task τi ∼ γ(T ),
the posterior distribution p(φi | Dq

i ) is approximated by another
distribution qξi(φi) characterized by the parameters ξi. The
ELBO for task τi can be expressed as follows:

L(ξi) = Eφi∼qξi (φi)[log p(D
q
i | φi)]

−DKL(qξi(φi) || p(φi)), τi ∼ γ(T ). (6)

When taking the global parameters θ into consideration, the
generation of the task-specific parameters φi and the prediction
on the query set Dq

i are conditioned on θ. Therefore, the latent
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distribution of φi is determined by p(φi | θ). The posterior
distribution over φi is approximated by the function qξi(φi | θ)
for task τi ∼ γ(T ). The conditional distribution of the observed
data (i.e., query dataset Dq

i ) is given by p(Dq
i | φi, θ). Note that

the query set Dq
i is constructed by Nq input-label pairs, i.e.,

{X̃(tq)
i , Ỹ

(tq)
i }Nq

q=1. We aim to predict the ground truth Ỹ
(tq)
i

given the observations X̃
(tq)
i as input. Under this setting, the

conditional distribution of the observed data can be rewritten
as p(Ỹ

(tq)
i | X̃(tq)

i , φi, θ). Then, the ELBO for task τi can be
rewritten as

L(θ, ξi) = Eφi∼qξi (φi | θ)

[
log p

(
Ỹ

(tq)
i | X̃(tq)

i , φi, θ
)]

−DKL(qξi(φi | θ) || p(φi | θ)), τi ∼ γ(T ). (7)

As can be observed in (7), the generation of task-specific parame-
ters φi is dependent on a set of parameters ξi. The computational
complexity grows linearly with the number of tasks. To reduce
the complexity, we use the information provided by the support
set Ds

i to facilitate the generation of task-specific parameters φi.
Instead of using ξi to approximate the posterior distribution over
the task-specific parameters qξi(φi | θ) for each task τi ∼ γ(T ),
we apply another function qλ parameterized by λ to map φi from
the support set Ds

i. We approximate the posterior distribution
using qλ(φi | Ds

i, θ), such that the computational cost of this
approximation process can be amortized across tasks. Based on
this operation, the ELBO for task τi can be expressed as follows:

L(θ, λ) = Eφi∼qλ(φi | Ds
i,θ)

[
log p

(
Ỹ

(tq)
i | X̃(tq)

i , φi, θ
)]

−DKL(qλ(φi | Ds
i, θ) || p(φi | θ)), τi ∼ γ(T ). (8)

In (8), p(Ỹ(tq)
i | X̃(tq)

i , φi, θ) is the conditional distribution over

Ỹ
(tq)
i , given the input data samples X̃(tq)

i , task-specific param-
eters φi, and the global parameters θ. qλ(φi | Ds

i, θ) produces
the variational distribution of the task-specific parameters φi,
given the support set Ds

i and global parameters θ. Using the
information provided by the global parameters θ, the prior
over the task-specific parameters p(φi | θ) learns the mean and
standard deviation of φi for any task τi ∼ γ(T ). Note that (8)
includes an expectation with respect to φi that is sampled from
qλ(·). The derivative ofEφi∼qλ(·) is difficult to calculate since the
process of sampling from a distribution is not differentiable and
cannot be backpropagated. This issue can be addressed through
reparameterization [33], which represents function qλ(·) in a
differentiable form as:

qλ(·) = μqλ
(·) + σqλ

(·)ε. (9)

In (9), the output of qλ(·) is reparameterized by the mean μqλ
(·)

and standard deviation σqλ
(·). Random variable ε denotes the

Gaussian distributed noise with zero mean and unit variance.
By using reparameterization, (8) can be rewritten as:

L̃(θ, λ) =

1

K

K∑
k=1

log p
(
Ỹ

(tq)
i | X̃(tq)

i , μqλ
(Ds

i, θ) + σqλ
(Ds

i, θ)ε
(k), θ

)

−DKL(qλ(φi | Ds
i, θ) || p(φi | θ)), τi ∼ γ(T ), (10)

Fig. 4. Proposed VST network. The inputs in support set {X(ts)
i }Ns

s=1 and

query set {X̃(tq)
i }Nq

q=1 are first processed by the extractor to generate the

feature maps. Then, data samples in support set {fθext(X
(ts)
i ),Y

(ts)
i }Ns

s=1 are
used to determine the distribution of task-specific parameters φi through the
amortization network. After that, the sampled task-specific parameters φi and

the features provided by the extractor fθext (X̃
(tq)
i ) are sent to the generator.

The predicted results Ŷ
(tq)
i are determined by the generator based on the

task-specific parameters and the extracted features.

where K is the number of Monte Carlo samples. The first term
on the right-hand side in (10) measures the accuracy of the
prediction results compared with the ground truth Ỹ

(tq)
i . The

second term serves as a KL regularization, which ensures the
approximation of the posterior distribution to be close to the
true distribution. In this work, we aim to maximize ELBO in
(10) across all prediction tasks:

maximize
θ,λ

Eτi∼γ(T )[L̃(θ, λ)]. (11)

In summary, given the optimized θ and λ as well as the support
set Ds

i of task τi, the distribution of task-specific parameters
φi can be determined. Then, the underlying distribution of the
spatial-temporal pattern can be inferred from a small number of
data samples in the support set without encountering the issue
of overfitting. In the next subsection, we solve problem (11) by
using a VST network. We train the developed VST network by
using the BML algorithm to obtain the parameters θ and λ.

B. Variational Spatial-Temporal Network

We now present the proposed VST network, where θ and λ

are the learnable parameters of the VST network. The proposed
VST network extracts the common spatial-temporal dependen-
cies shared by all tasks and adaptively infers the task-specific
parameters φi. The structure of the proposed VST network is
shown in Fig. 4. The proposed VST network includes three
modules: an extractor which is parameterized by θext, an amor-
tization network which is parameterized by λ, and a generator
which is parameterized by θgen. We define θ = {θext, θgen} as
the global parameters, which capture the shared spatial-temporal
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features of all tasks. The amortization network determines the
task-specific parameters. In the following, we will explain these
three modules in detail.

1) Extractor: The extractor is common to all prediction
tasks. It is developed to pre-process the input from both the
support and query sets to extract the spatial-temporal features
shared by all tasks. In order to accurately predict the wireless
traffic, it is important for the extractor to capture both the
local short-term and long-term spatial-temporal features. The
Conv3D network can extract dependencies of the traffic data
in the spatial and temporal domains by using a 3D kernel. In
the extractor, we apply the Conv3D operation to extract the
local short-term spatial-temporal dependencies. We consider
the kernel sizes of the Conv3D as κext

3D,1, κext
3D,2, and κext

3D,3. The
number of channels is denoted asHext

3D . Moreover, let θC3D denote
the learnable parameters in the Conv3D operation. We use the
rectified linear unit (ReLU) as the activation function.

For the shared long-term spatial-temporal dependencies,
we propose a dual-attention embedded ConvLSTM (DACon-
vLSTM) network. The DAConvLSTM network preserves the
capabilities of the ConvLSTM network to learn long-term
spatial-temporal dependencies through the LSTM cells and
convolutional operations. Moreover, the DAConvLSTM
network can extract the most important spatial-temporal features
in the long term by using the dual-attention mechanism. In the
following, the conventional ConvLSTM network is presented.
Then, we introduce the proposed dual-attention mechanism.
Given a P -timestamp input X

(t)
i = {Xi,t−P+1, . . . ,Xi,t} in

the support set of task τi, the ConvLSTM operation on each
element Xi,p, where p = t− P + 1, . . . , t, can be expressed as

ii,p = σ(Wxi ∗Xi,p +Whi ∗Hi,p−1 +Wci 
Ci,p−1 + bi),

fi,p = σ(Wxf ∗Xi,p +Whf ∗Hi,p−1 +Wcf 
Ci,p−1 + bf),

Ci,p = fi,p 
Ci,p−1

+ ii,p 
 tanh(Wxc ∗Xi,p +Whc ∗Hi,p−1 + bc),

oi,p = σ(Wxo ∗Xi,p +Who ∗Hi,p−1 +Wco 
Ci,p + bo),

Hi,p = oi,p 
 tanh(Ci,p),

where ∗ and 
 denote the two-dimensional convolution
(Conv2D) operator and Hadamard product, respectively. The
kernel sizes of the Conv2D module are denoted as κext

2D,1 and
κext

2D,2. We use Hext
2D to denote the number of channels of the

Conv2D module. σ(·) is the sigmoid function. ii,p, fi,p, Ci,p,
oi,p, andHi,p denote the input gate, forget gate, cell state, output
gate, and hidden state, respectively. Note that the gates and states
are all 3D tensors. Wxi, Whi, Wci, and bi are the weights and
bias for the input gate, which need to be learned through network
training. Similarly, Wxf, Whf, Wcf, and bf are the weights and
bias associated with the forget gate. Wxc, Whc, and bc are the
weights and bias related to the cell state.Wxo,Who,Wco, andbo

are the weights and bias for the output gate. Note that the weights
and biases are shared across all tasks. In addition, tanh(·) is the
hyperbolic tangent function. The input-to-state, cell-to-state, and
cell-to-cell transitions are element-wise controlled by each gate
ii,p, fi,p, andoi,p. This facilitates the model to keep the historical

Fig. 5. Structure of an ACLSTM cell.

information and learn to forget unimportant information in the
spatial-temporal domain. To further improve the capability of
the network to capture the most important long-term spatial and
temporal trends shared by all tasks, we propose to embed two
attention mechanisms in the ConvLSTM network.

Spatial Attention (S-ATT) Mechanism: We propose to embed
an S-ATT mechanism in the ConvLSTM network to capture the
important spatial correlation. We develop an attention embedded
ConvLSTM (ACLSTM) cell by reconstructing the input and
output gates of ConvLSTM with the S-ATT mechanism [25].
In particular, by using the S-ATT mechanism, the input gate is
reconstructed as follows:

Zi,p = Wi ∗ tanh(Wxi ∗Xi,p +Whi ∗Hi,p−1 (12)

+Wci 
Ci,p−1 + bi),

Ajk
i,p(h) =

exp(Zjk
i,p(h))

max
ĵ,k̂

exp(Zĵk̂
i,p(h))

, (13)

ii,p = {Ajk
i,p(h) |h = 1, . . . , H,

j = 1, . . . ,M, k = 1, . . . , N}, (14)

where Wi is a Conv2D kernel with size κext
ATT,1 and κext

ATT,2.
The number of channels is equal to Hext

ATT. The term

maxĵ,k̂ exp(Z
ĵk̂
i,p(h)) corresponds to the maximum element cho-

sen within channel h of Zi,p, for h = 1, . . . , Hext
ATT. The division

by the maximum value ensures that the attention scores are
distributed in the range between zero and one. The output gate
of the ConvLSTM cell can be reconstructed in a similar manner
as the input gate shown in (12)−(14). By embedding the S-ATT
mechanism into the ConvLSTM network, the ACLSTM cell can
focus on the most important long-term spatial features shared by
all tasks. The structure of an ACLSTM cell is shown in Fig. 5.

Temporal Attention (T-ATT) Mechanism: Given an input se-
quence X

(t)
i = {Xi,t−P+1, . . . ,Xi,t} with length P , the final

hidden state of an ACLSTM cell Hi,p contains information
for the entire input sequence. However, using a single variable
Hi,p to represent the information extracted from the sequence
{Xi,t−P+1, . . . ,Xi,t} may lead to information loss. To tackle
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Fig. 6. Structure of the DAConvLSTM network.

this issue, we propose a T-ATT mechanism, which determines
the weights for hidden states {Hi,t−P+1, . . . ,Hi,t}, such that
the hidden states with more information in the temporal domain
have larger weights in the output state. In particular, we reshape
the hidden states Hi,p into a vector hi,p, for p = t− P +
1, . . . , t. We concatenate the final state vector hi,t with hi,p, and
form the vector h̄i,t,p = [hT

i,t h
T
i,p]

T, for p = t− P + 1, . . . , t.
By using the T-ATT mechanism, the attention weights ai,t,p can
be determined by the following softmax operation:

ai,t,p =
exp

{
vT tanh

(
Wah̄i,t,p

)}
∑t

k=t−P+1 exp
{
vT tanh

(
Wah̄i,t,k

)} ,

p = t− P + 1, . . . , t, (15)

where Wa and v are the parameters of the T-ATT mechanism
which are shared by all the prediction tasks. Then, the output
of the T-ATT mechanism is given by the weighted hidden state
vector h̃i,t:

h̃i,t =

t∑
p=t−P+1

ai,t,phi,p. (16)

The weighted hidden state vector h̃i,t is transformed back
to a matrix, denoted as H̃i,t. By embedding the S-ATT and
T-ATT mechanisms into the ConvLSTM network, we con-
struct the DAConvLSTM network. The structure of the DA-
ConvLSTM network is shown in Fig. 6. We use θDACL =
{Wi,Wo,Wxk,Whk,Wck,bk,Wa,v} to denote the learnable
parameters in the DAConvLSTM network, where k ∈ {i, f, c, o}
represents the gate or cell state in the ConvLSTM network.

To leverage the capability of both Conv3D and DACon-
vLSTM networks to learn spatial-temporal dependencies, we
fuse the output of the two networks and obtain an ensembling
result. Through fusion operation, the extractor can exploit the
advantages of both Conv3D (to capture local spatial-temporal
fluctuations) and DAConvLSTM (to extract long-term trends).
This leads to an improved prediction performance compared
with employing only one of the two models. The network pa-
rameters of the extractor are given by θext = {θC3D, θDACM} and
the extractor network is denoted as fθext(·). The overall structure
of the proposed extractor is shown in the top-left part of Fig. 4.

2) Amortization Network: To tackle the spatial-temporal
variations, we develop an amortization network parameterized
by λ to approximate the posterior distribution of the task-specific
parameters. The structure of the amortization network is shown
in the lower part of Fig. 4. The amortization network determines
the mean and standard deviation of φi given the support set
Ds

i and the common knowledge provided by the extractor. The
amortization network has three phases. In the first phase, the
labels from the support set {Y(ts)

i }Ns
s=1 are sent to a Conv2D

network for pre-processing. The kernel sizes of the Conv2D
network are κamo

1 and κamo
2 , and the number of channels is de-

noted as Hamo
2D . In the second phase, the output from the Conv2D

network and the features provided by the extractor fθext(X
(ts)
i )

are fused together. The results after fusion are denoted as
{G(1)

i , . . . ,G
(Ns)
i }. Then, the results {G(1)

i , . . . ,G
(Ns)
i } are

averaged and converted to a vector ḡi of dimension Dg. In the
third phase, the averaged results ḡi are sent to fully connected
layers to determine the mean and standard deviation of the
distribution over the task-specific parameters. The mean and
standard deviation are denoted as μqλ

(fθext(X
(ts)
i ),Y

(ts)
i ) and

σqλ
(fθext(X

(ts)
i ),Y

(ts)
i ), respectively. Given the mean and stan-

dard deviation of task τi, we can sample the task-specific param-
eters φi = μqλ

(fθext(X
(ts)
i ),Y

(ts)
i ) + σqλ

(fθext(X
(ts)
i ),Y

(ts)
i )ε

for task τi ∼ γ(T ). The dimension of the sampled task-specific
parameters is denoted by Dφ.

3) Generator: The generator is used to produce the predicted
results to approach the ground truth {Ỹ(tq)

i }Nq

tq=1 in the query
set for task τi. Two pieces of information need to be sent to
the generator. They are the input from the query set and the
task-specific parameters. Each input in the query set, which
corresponds to X̃

(tq)
i , is successively processed by the extractor

and the Conv2D module. Let κgen
1 and κgen

2 denote the kernel
sizes, and Hgen

2D denote the number of channels of the Conv2D
module. The output of the Conv2D module is then fused with
the sampled task-specific parameters φi. The result after fusion
is converted to a vector, which is denoted as ri with dimension
Dr. Then, ri is fed into two fully connected layers successively.
The output of the fully connected layers is reshaped to a 3D
tensor with dimension Q×M ×N , which corresponds to the
predicted traffic values of the next Q timestamps for task τi. We
denote θgen as the parameters of the generator. The final predicted

results are expressed as Ŷ
(tq)
i = fθgen(X̃

(tq)
i , φi), where fθgen

represents the generator.

C. BML-Based Training and Testing

We apply the BML algorithm for the training and testing of
the VST network, such that the VST network can obtain the
common knowledge shared by different prediction tasks and
quickly adapt to different prediction tasks using the data samples
in the support set. The BML-based training procedure is shown
in Algorithm 1. For each training iteration, we sample a batch of
tasks. For each batch of tasks, we partition the dataset into the
support and query sets accordingly (Line 5) and determine the
task-specific parameters based on the support set (Line 6). Given
the task-specific parameters and the query set, we compute the
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Algorithm 1: BML-Based Training Procedure.

1: Input: Distribution of tasks γ(T ), initialize θ and λ,
learning rate γ of Adam optimizer [34], total number
of iterations Nmax. Niter := 0.

2: while Niter < Nmax do
3: Sample a batch of tasks from γ(T ).
4: for each sampled task τi ∼ γ(T ) do
5: Partition the dataset into the support set Ds

i and
query set Dq

i .
6: Sample the task-specific parameters for task τi.

That is, φi = μqλ
(fθext(X

(ts)
i ),Y

(ts)
i ) +

σqλ
(fθext(X

(ts)
i ),Y

(ts)
i )ε.

7: Compute the ELBO in (10).
8: end for
9: Solve problem (11) and update {θ, λ} based on

Adam optimizer.
10: Niter := Niter + 1.
11: end while
12: Output: Trained global parameters θ and the

amortization network parameters λ.

Algorithm 2: BML-Based Testing Procedure.
1: Input: New traffic prediction task τj sampled from

γ(T ), the trained θ and λ.
2: Partition the dataset into the support set Ds

j and query
set Dq

j .

3: for each X̃
(tq)
j in query set Dq

j do
4: Sample the task-specific parameters for task τj .

That is, φj =

μqλ
(fθext(X

(ts)
j ),Y

(ts)
j ) + σqλ

(fθext(X
(ts)
j ),Y

(ts)
j )ε.

5: Obtain Ŷ
(tq)
j = fθgen(X̃

(tq)
j , φj).

6: end for
7: Output: Predicted results Ŷ(tq)

j .

ELBO in (10) (Line 7). Then, the parameters θ and λ are updated
using the Adam optimizer [34] (Line 9).

In the testing stage, as shown in Algorithm 2, we sample a
new task τj ∼ γ(T ) for testing and partition the dataset into
the support and query sets (Line 2). The trained VST network
generates the task-specific parameters φj based on the data
samples in the support set Ds

j (Line 4). Then, given the input

X̃
(tq)
j in the query set and task-specific parameters φj , the

generator determines the predicted traffic Ŷ(tq)
j in the query set

for task φj (Line 5). By using the BML algorithm, the trained
VST network can quickly adapt to the testing task by using the
data samples in the support set.

D. Computational Complexity Analysis

In this subsection, we provide a computational complex-
ity analysis of the proposed VST-BML algorithm. For the
BML-based training procedure, the computational complexity
includes the computation required in the extractor, amortization

network, and generator. The extractor contains DAConvLSTM
and Conv3D networks. The computational complexity of the
DAConvLSTM network is given by

ODAConvLSTM = O
(
P
(
Hext

2DMNκext
2D,1κ

ext
2D,2

+MN
(
Hext

2Dκ
ext
2D,1κ

ext
2D,2 +Hext

ATTκ
ext
ATT,1κ

ext
ATT,2

)))
. (17)

The computational complexity of the Conv3D network is

OConv3D = O
(
Hext

3DMNPκext
3D,1κ

ext
3D,2κ

ext
3D,3

)
. (18)

The computational complexity of the extractor can be expressed
as

Oext = ODAConvLSTM +OConv3D. (19)

For the amortization network, the computational complexity
of the Conv2D and fully connected networks are given by
O(Hamo

2D MNκamo
1 κamo

2 ) and O(DgDφ), respectively. The com-
putational complexity of the amortization network is

Oamo = O (Hamo
2D MNκamo

1 κamo
2 +DgDφ) . (20)

Finally, the computational complexity of the generator is given
by

Ogen =
(
Hgen

2DMNκgen
1 κgen

2 +DrQMN
)
. (21)

During network training, the data samples from the support set
are processed by the extractor and amortization network. The
data samples from the query set are processed by the extractor
and generator. The overall computational complexity of BML-
based training is given by

Otrain

= (NmaxNB (Ns (Oext +Oamo) +Nq (Oext +Ogen))) ,
(22)

where Nmax is the total number of iterations during training and
NB is the number of sampled tasks in each batch.

For online testing, given a new task, the computational com-
plexity for adaptive traffic prediction is

Otest = (Ns (Oext +Oamo) +Nq (Oext +Ogen)) . (23)

We can observe that the proposed VST-BML algorithm has a
linear complexity with the sizes of a region, i.e., M and N . The
number of data samples in the support and query sets, i.e., Ns

and Nq, also affects the computational complexity, In the next
section, we provide a runtime evaluation for both training and
testing procedures.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed VST-BML algorithm on a real-world wireless traffic
dataset [23], which is provided by Telecom Italia. Similar to
some recent works (e.g., [9], [10], [18]), we show the prediction
performance on the CDRs provided by this dataset, i.e., voice
call, short message service (SMS), and Internet in the city of
Milan in Italy. We use two metrics to evaluate the prediction
performance. The first metric is the RMSE, which measures the
difference between the predicted results and ground truth. The
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second metric is the MAE, which measures the average of the
absolute difference between the predicted results and ground
truth. We compare the RMSE and MAE of the proposed VST-
BML algorithm with five baseline methods. We then present
the runtime of offline training and online testing for different
methods. After that, comparisons between the predicted results
and ground truth in different regions are provided to further
demonstrate the prediction performance of the proposed VST-
BML algorithm. We also conduct ablation experiments to eval-
uate the effect of the dual-attention mechanism in the extractor.
Finally, we evaluate the effect of the number of data samples
in the support and query sets on the prediction accuracy. In the
following, we first introduce the considered baseline methods
and experimental settings. Then, the experimental results are
presented.

A. Baseline Methods and Experimental Settings

We compare the performance of our proposed VST-BML
algorithm with that of the following baseline methods.
� ARIMA [11]: ARIMA is a statistical analysis model that

learns the temporal dependency from the time series data
and predicts wireless traffic. It has limited capability in cap-
turing complex spatial-temporal dependency of the traffic
data in a region.

� ConvLSTM [16]: ConvLSTM applies convolutional opera-
tions in both the input-to-state and state-to-state transitions
in traditional LSTM. ConvLSTM network can extract both
spatial and temporal dependencies.

� MVSTGN [18]: MVSTGN uses a GNN for wireless traf-
fic prediction. The attention modules are embedded in
the GNN to extract the global spatial-temporal correla-
tion. Densely connected convolutional layers are employed
to extract the local spatial-temporal dependencies of the
nodes.

� STCNet [9]: STCNet captures spatial-temporal dependen-
cies using the ConvLSTM network. After feature extrac-
tion, STCNet predicts wireless traffic based on CNNs.

� ST-Tran [10]: ST-Tran includes a spatial and temporal
transformer block which can learn the spatial-temporal
features. The learned features are fused together to make
the final prediction.

We consider the traffic prediction on an hourly basis, where
the collected raw traffic data is grouped into hourly scale, i.e., the
duration between two consecutive timestamps is set to one hour.
After aggregation, there are 1,488 hours in total. We consider
the size of a region to be M ×N = 10× 10. In each prediction
task, we choose P = 5 and Q = 1. That is, we aim to predict
the wireless traffic of the next timestamp based on the previous
five observations. We consider the number of data samples in the
support set and query set to beNs = 5 andNq = 1, respectively.
The proposed VST-BML algorithm can quickly adapt to traffic
prediction on the query set by using only five data samples in
the support set. Without loss of generality, we generate a task set
which contains 5,000 prediction tasks (i.e., traffic prediction in
randomly selected 5,000 regions) in total. 80% of the tasks are
used for training, and the remaining 20% of the tasks are used

for testing. The learning rate of the Adam optimizer [34] is set to
10−5. Note that all the methods are trained using the same data
samples and evaluated using the same testing dataset. BML-
based training and testing methods are used in our proposed
VST-BML algorithm. For the other five baseline methods, the
training dataset is constructed by aggregating the data samples in
the support and query sets of all training tasks. During training,
the traffic volume is normalized to be between zero and one
by using max-min normalization. After traffic prediction in the
testing stage, the predicted results are rescaled back to their
nominal values.

B. Experimental Results

We evaluate the prediction performance of the proposed VST-
BML algorithm on the testing tasks. In the testing tasks, we
perform wireless traffic prediction in new regions, which are
different from the regions in the training tasks.

1) Performance Comparison: Table I summarizes the RMSE
and MAE performance of different methods. It can be observed
from Table I that the proposed VST-BML algorithm outperforms
the other five baseline methods for all types of wireless traffic.
In particular, the traditional statistical model ARIMA has the
highest RMSE and MAE. This is because ARIMA can only
capture simple temporal dependency of the time series data and
has limited capability in tackling high-dimensional and complex
spatial-temporal correlations. The deep learning based methods,
i.e., ConvLSTM, MVSTGN, STCNet, and ST-Tran, have better
performance than ARIMA since they can extract the spatial-
temporal features. Those deep learning based methods can learn
the spatial-temporal dependencies in a particular region based
on convolutional operations, attention mechanism, LSTM cells,
and graph representation. However, they have limited capability
to learn the spatial-temporal variations across different regions.
Even given the information provided by the support set, those
methods are not able to accurately capture different spatial-
temporal patterns in different regions. This is due to the fact that
a larger number of data samples are required for those algorithms
to learn a particular spatial-temporal pattern, while the support
set contains only a limited number of data samples. Under this
condition, retraining of the networks using sufficient data sam-
ples is needed for those algorithms to perform traffic prediction
in a new region. On the other hand, the proposed VST-BML
algorithm can tackle the spatial-temporal variations and provide
accurate predictions in different regions by using only Ns = 5
data samples from the support set without retraining the VST
network. This demonstrates the fast adaptation capability of the
proposed algorithm. For voice call traffic, compared with the
ST-Tran model which has the best performance in all baselines,
the proposed VST-BML algorithm can reduce the RMSE and
MAE values by 53.0% and 48.4%, respectively. For SMS and
Internet traffic, the proposed algorithm can provide 38.3% and
36.3% reduction in terms of RMSE, and 29.2% and 31.0%
reduction in terms of MAE, respectively. Given the results in
Table I, we can summarize the advantages of the proposed
VST-BML algorithm over the other five baseline methods as
follows:
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TABLE I
PREDICTION PERFORMANCE COMPARISONS AMONG DIFFERENT METHODS IN TERMS OF RMSE AND MAE

TABLE II
RUNTIME FOR OFFLINE TRAINING AND ONLINE TESTING

� The proposed VST network can well capture the common
short-term and long-term spatial-temporal features shared
across different regions through the extractor. The use
of the dual-attention mechanism in the extractor enables
the VST network to focus on the most important spatial-
temporal information. The generated task-specific param-
eters by the amortization network have the representative
capability to capture the particular spatial-temporal pattern
in the target region.

� The BML-based training algorithm enables the VST net-
work to effectively learn the underlying distribution of
spatial-temporal patterns by using only a small num-
ber of data samples in the support set without encoun-
tering the issue of overfitting. Given a few data sam-
ples (e.g., five samples) in the support set in a region,
the proposed VST-BML algorithm has the capability to
quickly extract the complex spatial-temporal pattern in that
region.

2) Runtime Comparison: In this subsection, we compare the
execution time of offline training and online testing for different
methods. We conduct the experiments using a computing server
with an Intel Core i7-10700 @ 3.80 GHz CPU and an NVIDIA
GeForce RTX 2070 GPU. The results are shown in Table II. The
results show that the proposed VST-BML algorithm requires a
longer training time than the other baseline methods since the
proposed algorithm requires an additional iteration loop for the
computation of task-specific parameters for each task during
training. For online testing, we can observe that the VST-BML
algorithm has a comparable runtime as the baseline methods. We
note that although the proposed algorithm has a longer offline

Fig. 7. Comparisons of predicted results and ground truth over a time period
of 16 days for voice call traffic. (a) and (b) show the comparison results of two
grid cells randomly selected in two different regions.

training time, the trained VST network has the adaptation capa-
bility for traffic prediction in different regions and guarantees a
high prediction accuracy in terms of RMSE and MAE. The other
baseline methods are not able to provide accurate predictions.
For the baseline methods, network retraining may be required
before performing traffic prediction in a different region, which
incurs additional computational overhead.

3) Prediction Performance of the VST-BML Algorithm: To
further illustrate the spatial-temporal variations and evaluate
the adaptive prediction performance of the proposed VST-BML
algorithm, we show the predicted results versus the ground
truth. The prediction performance on voice call, SMS, and
Internet traffic are presented in the following. For each type of
traffic, we compare the predicted results and ground truth from
both the temporal and spatial perspectives. The experiments are
conducted in different regions which are randomly selected in
different geographical locations in Milan.

In Fig. 7, we plot the predicted results by the VST-BML
algorithm and the ground truth over a randomly selected 16-day
(384 hours) period for voice call traffic. Fig. 7(a) and (b) show
the results of two randomly selected grid cells from two different
regions in the southern and northern parts of Milan, respectively.
The results show that the wireless traffic in both grid cells
changes periodically, with peaks and valleys appearing every
24 hours. However, the temporal patterns in these two cells vary
a lot. Specifically, in Fig. 7(a), the daily peak values of wireless
traffic are between 30 and 60. On the other hand, in Fig. 7(b),
the daily peak values fall within a larger range, i.e., between 25
and 125. While there exist temporal variations, we can observe
that the proposed VST-BML algorithm can consistently provide
accurate traffic predictions for both grid cells over the selected
16 days. The results in Fig. 7 demonstrate that the proposed

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 22,2025 at 22:51:21 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND WONG: BAYESIAN META-LEARNING FOR ADAPTIVE TRAFFIC PREDICTION IN WIRELESS NETWORKS 6631

Fig. 8. Comparisons of predicted results and ground truth in a region for voice
call traffic. (a) and (b) show the comparison results in two randomly selected
regions.

Fig. 9. Comparisons of predicted results and ground truth over a time period
of 16 days for SMS traffic. (a) and (b) show the comparison results of two grid
cells randomly selected in two different regions.

Fig. 10. Comparisons of predicted results and ground truth in a region for
SMS traffic. (a) and (b) show the comparison results in two randomly selected
regions.

VST-BML algorithm has a strong adaptation capability to tackle
temporal variations across different regions.

To evaluate the adaptation capability of the proposed algo-
rithm on spatial variations, in Fig. 8, we show the predicted
results by the VST-BML algorithm and the ground truth in
different regions, where each region contains a group of 10× 10
grid cells. The results are obtained from an arbitrary timestamp.
Fig. 8(a) and (b) present the heat maps of the predicted results
and ground truth in two randomly selected regions from the
southwestern and western parts of Milan, respectively. Each
pixel represents a grid cell in a region and the brightness of each
pixel represents the corresponding traffic volume of voice call.
The results in Fig. 8 show that the traffic in these two regions
has different spatial patterns, which are reflected by different
traffic volumes and distributions. While the spatial patterns are
highly diverse, the proposed VST-BML algorithm can provide
accurate prediction results that well match the spatial patterns in
the target regions. This indicates that the proposed VST-BML
algorithm has the fast adaptation capability to capture spatial
variations in different regions by using Ns = 5 data samples.

In Figs. 9 and 10, we show the predicted results versus
the ground truth of SMS traffic. Fig. 9 shows the comparison
between the predicted results and ground truth over 16 days in
two randomly selected grid cells from two different regions in
the eastern and southern parts, respectively. It can be observed
that the predicted results by the proposed VST-BML algorithm

Fig. 11. Comparisons of predicted results and ground truth over a time period
of 16 days for Internet traffic. (a) and (b) show the comparison results of two
grid cells randomly selected in two different regions.

Fig. 12. Comparisons of predicted results and ground truth in a region for
Internet traffic. (a) and (b) show the comparison results in two randomly selected
regions.

match the ground truth for both regions. In Fig. 9(a), we can
observe a sharp increase in traffic volume around timestamp 288,
and the proposed VST-BML algorithm can still provide accurate
predicted result which approaches the ground truth. By compar-
ing the results shown in Fig. 9(a) and (b) which have diverse
temporal patterns, we can conclude that the proposed VST-BML
algorithm can quickly adapt to different traffic prediction tasks
using five data samples. Fig. 10 compares the predicted results
by the VST-BML algorithm for SMS traffic with the ground
truth from two regions in the northwestern and southwestern
parts, respectively. The results show that the predicted results are
close to the ground truth in both regions, which demonstrates the
capability of the proposed algorithm to tackle spatial variations
across different regions.

We then show the predicted results versus ground truth for
Internet traffic. We present the experimental results from tem-
poral and spatial perspectives in Figs. 11 and 12, respectively.
Similar to the previous sets of experiments, these results are from
different regions which have diverse spatial-temporal patterns.
We can observe that Internet traffic changes more dynamically
when compared with voice call or SMS traffic. In particular, the
peak Internet traffic in each day is much higher, and the ratio
between peak traffic and off-peak traffic is larger. For Internet
traffic, experimental results show that the proposed algorithm
can still quickly capture various spatial-temporal patterns in
wireless traffic by using five data samples in the support set from
a region. The reasons can be attributed to the strong capability
of the proposed algorithm in extracting shared common features
and adaptively capturing spatial-temporal patterns in the target
regions.

4) Ablation Study: In this subsection, we evaluate the effect
of the dual-attention mechanism in the extractor, which is used to
capture the most important long-term spatial-temporal features.
We conduct a set of ablation experiments on all three types of
wireless traffic in the dataset. We consider the following cases:
(a) without attention mechanism (denoted by “w.o. ATT”), (b)
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TABLE III
EFFECT OF THE DUAL-ATTENTION MODULE ON THE PREDICTION

PERFORMANCE

with T-ATT mechanism only (denoted by “with T-ATT”), (c)
with S-ATT mechanism only (denoted by “with S-ATT”), and
(d) with dual-attention mechanism (denoted by “with DA”), The
RSME and MAE results of the proposed VST-BML algorithm
are shown in Table III. The results show that the prediction accu-
racy can considerably be improved by using the dual-attention
mechanism, which can extract the most important long-term
spatial-temporal dependencies. In addition, it is shown that using
the S-ATT mechanism brings more performance gains than
using the T-ATT mechanism for all three types of traffic. Since
the traffic patterns have more significant variations in the spatial
domain across different regions, effectively capturing the spatial
correlations in a region is important.

5) Effect of the Number of Data Samples: Finally, we eval-
uate the effect of Ns and Nq, which are the number of data
samples in the support and query sets, respectively. In Fig. 13,
we show the RMSE and MAE performance for all three types of
wireless traffic with different values of Ns and Nq. We consider
Nq to be equal to 1, 2, and 5 and Ns varies from 2 to 10. It can be
observed from the figures that the proposed VST-BML algorithm
can provide more accurate predicted results with larger Ns and
Nq. Both RMSE and MAE decrease with an increasing number
of data samples in the support and query sets. The reasons are
as follows. When more data samples are available in the sup-
port set (i.e., Ns increases), the proposed algorithm can obtain
more information and extract more spatial-temporal features. In
addition, we note that the goal is to adaptively provide accurate
predictions for the traffic in the query set of each region. When
Nq increases, more data samples in the query set can be used
for the calculation of the objective function (10) in step 7 of
Algorithm 1. This leads to more accurate averaged objective
values and better prediction performance. The proposed algo-
rithm can learn a better strategy for adaptive traffic prediction
and improve prediction performance. Therefore, by using more
data samples in the support and query sets, the proposed algo-
rithm can tackle spatial-temporal variations more effectively and
provide more accurate predicted results.

Fig. 13. Evaluation of the effect of Ns and Nq on prediction accuracy. Figures
(a)−(f) illustrate the RMSE and MAE performance for three types of wireless
traffic.

VI. CONCLUSION

In this paper, we investigated the adaptive traffic prediction
problem in wireless networks, where there exist strong spatial-
temporal variations in wireless traffic across different regions.
We proposed a VST-BML algorithm to tackle spatial-temporal
variations and predict traffic in different regions. We evalu-
ated the performance of the proposed VST-BML algorithm
on a real-world dataset which contains three types of traffic,
i.e., voice call, SMS, and Internet. The results showed that
the proposed VST-BML algorithm can provide more accurate
predicted results when compared with five baseline methods.
We also compared the predicted results with the ground truth in
different regions. Results showed that our proposed algorithm
can consistently provide accurate predicted results and has a fast
adaptation capability. Moreover, experimental results showed
that when increasing the number of data samples in the support
and query sets, the prediction accuracy can further be improved.

For future work, we are interested in developing a more flex-
ible framework for adaptive traffic prediction. We will consider
the size of each region being different and design an algorithm
that is applicable for traffic prediction in regions with different
sizes. Furthermore, in this work, we predicted future traffic
on a fixed time scale (i.e., on an hourly basis). It would be
beneficial to design a flexible scheme that enables the prediction
of future traffic on various time scales (e.g., on an hourly,
daily, and weekly basis), which can facilitate diverse resource
management requirements (e.g., dynamic resource allocation,
network infrastructure planning and deployment).

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 22,2025 at 22:51:21 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND WONG: BAYESIAN META-LEARNING FOR ADAPTIVE TRAFFIC PREDICTION IN WIRELESS NETWORKS 6633

REFERENCES

[1] Q. Wu, X. Chen, Z. Zhou, L. Chen, and J. Zhang, “Deep reinforcement
learning with spatio-temporal traffic forecasting for data-driven base sta-
tion sleep control,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 935–948,
Apr. 2021.

[2] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, “Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verification,”
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1291–1306, Jun. 2019.

[3] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5G network
slicing resource utilization,” in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), Atlanta, GA, 2017, pp. 1–9.

[4] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. Zhang, “Arti-
ficial intelligence-enabled cellular networks: A critical path to beyond-5G
and 6G,” IEEE Wireless Commun., vol. 27, no. 2, pp. 212–217, Apr. 2020.

[5] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap
to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[6] 3GPP TR 22.874, “Study on traffic characteristics and performance re-
quirements for AI/ML model transfer in 5GS (Release 18),” Dec. 2021.

[7] ITU, “Enter the ITU challenge to optimize 5G networks with AI,” ITU
Hub, Jul. 2021.

[8] J. Wang et al., “Spatiotemporal modeling and prediction in cellular net-
works: A big data enabled deep learning approach,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Atlanta, GA, 2017, pp. 1–9.

[9] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep transfer
learning for intelligent cellular traffic prediction based on cross-domain
big data,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1389–1401,
Jun. 2019.

[10] Q. Liu, J. Li, and Z. Lu, “ST-Tran: Spatial-temporal transformer for cellular
traffic prediction,” IEEE Commun. Lett., vol. 25, no. 10, pp. 3325–3329,
Oct. 2021.

[11] Y. Shu, M. Yu, J. Liu, and O. Yang, “Wireless traffic modeling and
prediction using seasonal ARIMA models,” in Proc. IEEE Int. Conf.
Commun. (ICC), Anchorage, AK, 2003, pp. 1675–1679.

[12] C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, “Spatio-temporal wireless
traffic prediction with recurrent neural network,” IEEE Wireless Commun.
Lett., vol. 7, no. 4, pp. 554–557, Aug. 2018.

[13] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from raw
data using LSTM networks,” in Proc. IEEE Int. Symp. Pers. Indoor Mobile
Radio Commun. (PIMRC), Bologna, Italy, 2018, pp. 1827–1832.

[14] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as
images: A deep convolutional neural network for large-scale transportation
network speed prediction,” Sensors, vol. 17, no. 4, Apr. 2017, Art. no. 818.

[15] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using deep
spatio-temporal neural networks,” in Proc. ACM Int. Symp. Mobile Ad Hoc
Netw. Comput. (MobiHoc), Los Angeles, CA, 2018, pp. 231–240.

[16] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo,
“Convolutional LSTM network: A machine learning approach for precipi-
tation nowcasting,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NeurIPS),
Montreal, Canada, 2015, pp. 802–810.

[17] X. Wang et al., “Spatio-temporal analysis and prediction of cellular traffic
in metropolis,” IEEE Trans. Mobile Comput., vol. 18, no. 9, pp. 2190–2202,
Sep. 2019.

[18] Y. Yao, B. Gu, Z. Su, and M. Guizani, “MVSTGH: A multi-view spatial-
temporal graph network for cellular traffic prediction,” IEEE Trans. Mobile
Comput., vol. 22, no. 5, pp. 2837–2849, May 2023.

[19] K. He, X. Chen, Q. Wu, S. Yu, and Z. Zhou, “Graph attention spatial-
temporal network with collaborative global-local learning for citywide
mobile traffic prediction,” IEEE Trans. Mobile Comput., vol. 21, no. 4,
pp. 1244–1256, Apr. 2022.

[20] Y. Fang, S. Ergüt, and P. Patras, “SDGNet: A handover-aware spatiotem-
poral graph neural network for mobile traffic forecasting,” IEEE Commun.
Lett., vol. 26, no. 3, pp. 582–586, Mar. 2022.

[21] F. Sun et al., “Mobile data traffic prediction by exploiting time-evolving
user mobility patterns,” IEEE Trans. Mobile Comput., vol. 21, no. 12,
pp. 4456–4470, Dec. 2022.

[22] L. Yu et al., “STEP: A spatio-temporal fine-granular user traffic prediction
system for cellular networks,” IEEE Trans. Mobile Comput., vol. 20, no. 12,
pp. 3453–3466, Dec. 2021.

[23] G. Barlacchi et al., “A multi-source dataset of urban life in the city of Milan
and the province of Trentino,” Sci. Data, vol. 2, Oct. 2015, Art. no. 150055.

[24] W. Wang, C. Zhou, H. He, W. Wu, W. Zhuang, and X. Shen, “Cellular
traffic load prediction with LSTM and Gaussian process regression,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[25] Z. Wang and V. W. S. Wong, “Cellular traffic prediction using deep
convolutional neural network with attention mechanism,” in Proc. IEEE
Int. Conf. Commun. (ICC), Seoul, South Korea, 2022, pp. 2339–2344.

[26] S. Fang, X. Pan, S. Xiang, and C. Pan, “Meta-MSNet: Meta-learning based
multi-source data fusion for traffic flow prediction,” IEEE Signal Process.
Lett., vol. 28, pp. 6–10, 2021.

[27] T. Kuber, I. Seskar, and N. Mandayam, “Traffic prediction by augmenting
cellular data with non-cellular attributes,” in Proc. IEEE Wirel. Commun.
Netw. Conf. (WCNC), Nanjing, China, 2021, pp. 1–6.

[28] C. Zhang, S. Dang, B. Shihada, and M.-S. Alouini, “Dual attention-based
federated learning for wireless traffic prediction,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2021, pp. 1–10.

[29] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecast-
ing, 3rd ed. Berlin, Germany: Springer, 2016.

[30] S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage
data: A large-scale spectrum measurement study,” IEEE Trans. Mobile
Comput., vol. 11, no. 6, pp. 1033–1046, Jun. 2012.

[31] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-
learning in neural networks: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 9, pp. 5149–5169, Sep. 2022.

[32] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in varia-
tional inference,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8,
pp. 2008–2026, Aug. 2019.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc.
Int. Conf. Learn. Representations (ICLR), Banff, Canada, 2014.

[34] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations (ICLR), San Diego, CA, 2015.

Zihuan Wang (Graduate Student Member, IEEE)
received the BSc and MASc degrees from the Dalian
University of Technology, Dalian, China, in 2017 and
2020, respectively. She is currently working toward
the PhD degree with the Department of Electrical
and Computer Engineering, University of British
Columbia (UBC), Vancouver, Canada. Her research
interests include machine learning and artificial in-
telligence for wireless networks. She is the assistant
to editor-in-chief of IEEE Transactions on Wireless
Communications. She received UBC’s Four Year Fel-

lowship in 2020, the Li Tze Fong Memorial Fellowship in 2023, and the Graduate
Support Initiative Award in 2021–2023. She received the Best Paper Award at
the IEEE ICC 2022.

Vincent W. S. Wong (Fellow, IEEE) received the BSc
degree from the University of Manitoba, Canada, in
1994, the MASc degree from the University of Wa-
terloo, Canada, in 1996, and the PhD degree from the
University of British Columbia (UBC), Vancouver,
Canada, in 2000. From 2000 to 2001, he worked
as a systems engineer with PMC-Sierra Inc. (now
Microchip Technology Inc.). He joined the Depart-
ment of Electrical and Computer Engineering, UBC
in 2002 and is currently a professor. His research areas
include protocol design, optimization, and resource

management of communication networks, with applications to 5G/6G wireless
networks, Internet of things, mobile edge computing, smart grid, and energy
systems. Dr. Wong is the editor-in-chief of IEEE Transactions on Wireless Com-
munications. He has served as an area editor of IEEE Transactions on Commu-
nications and IEEE Open Journal of the Communications Society, an associate
editor of the IEEE Transactions on Mobile Computing and IEEE Transactions
on Vehicular Technology, and a guest editor of the IEEE Journal on Selected
Areas in Communications, IEEE Internet of Things Journal, and IEEE Wireless
Communications. He is the general co-chair of IEEE INFOCOM 2024. He was
a tutorial co-chair of IEEE GLOBECOM’18, a technical program co-chair of
IEEE VTC2020-Fall and IEEE SmartGridComm’14, and a symposium co-chair
of IEEE ICC’18, IEEE SmartGridComm (’13, ’17) and IEEE GLOBECOM’13.
He received the Best Paper Award at the IEEE ICC 2022 and IEEE GLOBECOM
2020. He is the chair of the IEEE Vancouver Joint Communications Chapter
and has served as the chair of the IEEE Communications Society Emerging
Technical Sub-Committee on Smart Grid Communications. He is an IEEE
Vehicular Technology Society distinguished lecturer (2023−2025) and was an
IEEE Communications Society distinguished lecturer (2019−2020).

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on April 22,2025 at 22:51:21 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


